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Practical embedding for ionic materials: Crystal-adapted pseudopotentials for the MgO crystal
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We present a method of deriving effective core potentials~ECP’s! for negative and positive ions. These
ECP’s are adapted to ionic crystals and can be used as components of an embedding model in most quantum
chemistry codes. Cluster-in-the-lattice calculations of several defects and impurity centers in MgO are exam-
ined as a test.
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I. INTRODUCTION

Winter, Pitzer, and Temple~WPT! introduced in 1987 the
idea of using effective core potentials~ECP’s! to represent
the quantum embedding effects of the crystalline envir
ment in cluster-in-the-lattice calculations of ion
materials.1,2 In such calculations, a finite set of point charg
along with the ECP’s is also commonly used. Its role is
mimic, as faithfully as possible, the Madelung field of t
crystal. Generally, the embedding ECP technique is inten
~a! as a method for the addition to the cluster Hamiltonian
an interaction that physically exists in the crystal, and~b! as
a scheme to effectively solve some of the technical proble
that plague quantum cluster calculations applied to c
densed matter. For example, the ECP’s provide a ba
against the unphysical escape ‘‘towards the lattice’’ of
cluster electron density and also improve the convergenc
the self-consistent-field process in total energy calculatio

The WPT embedding scheme can be immediately use
most current quantum chemistry codes3–6 as they support
assigning of ECP’s and point charges to arbitrary position
the lattice. This is, probably, the best practical advantage
the WPT embedding over other techniques proposed
far.7–11 One of its most serious difficulties, however, is t
unavailability of ECP’s for negative anions. This is a cons
quence of methods traditionally used to derive t
ECP’s12–14that require one or more populated orbitals out
the core for which the pseudopotential is being derived. T
means, for instance, that anall-electronsolution of F22 must
be obtained before deriving the pseudopotential for F2.

Even with this limitation, the WPT embedding has prov
to be a valid technique and it has been used in a numbe
problems and compounds, including Cu1:NaF and
Cu1:NaCl,1,2,15 V 12:MgF2,16 Cr31:Al 2O3,17 and
La2CuO4.18–23

To alleviate the problem of deriving ECP’s for anions, w
propose a procedure in this paper that is based on the or
description of the core being simulated and that does
depend on the existence of any valence set out of this c
This procedure may be viewed as a translation of theab
initio model potential~AIMP! formalism of Huzinagaet al.24

to the ECP formalism.
Although free-ion orbital descriptions of positive or neg
0163-1829/2001/64~10!/104102~11!/$20.00 64 1041
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tive ions can be used to derive the ECP’s, our procedure u
the ionic descriptions self-consistently adapted to the cry
environment provided by theab initio perturbed ion~AIPI!
method.25,26 In particular, the use of the AIPI wave function
solves the problem posed by multinegative ions, which
generally unstable in gas phase and for which empirical r
pes such as Watson spheres provide only very crude app
mations. From now on, we will use the term ‘‘crystal adapt
pseudopotentials’’~CAPS’s! to refer to the ECP’s derived
with the method proposed here.

The rest of the article is organized as follows. The emb
ding method is presented and analyzed in the next sec
Crystal adapted pseudopotentials for the MgO crystal are
tained in Sec. III. In this section we also analyze the clus
lattice consistency, using results of calculations on p
MgO, and discuss the advantages and difficulties of defic
cluster-lattice partitions. A well-tested cluster model is us
in Sec. IV to determine the equilibrium properties of seve
cationic and anionic MgO defect centers, including both n
tral and charged defects. The main conclusions are fin
presented in Sec. V.

II. METHOD

Many local properties of pure and defective solids can
studied with the help of cluster-in-the-lattice calculation
This type of calculation is designed to determine the wa
function and energy levels of a system made of a small nu
ber of atoms or ions~the cluster! embedded into the rest o
the crystal~the lattice!. Since the concept of embedding in
cludes mathematical and physical consistency between
cluster and lattice wave functions, it can properly be d
scribed as a case of electronic group separation9,25 and ana-
lyzed in terms of the electronic separability theory~TSE! of
McWeeny27 and Huzinaga.28

The cluster (C) is the electron group most interesting fo
our problem. The lattice (L) is divided into a number of
atoms or ions whose representation is known in advance
kept frozen during the cluster calculation. The cluster wa
function is obtained by solving the Fock equations cor
sponding to the effective Hamiltonian
©2001 The American Physical Society02-1
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Ĥeff
C 5ĤC1 (

SPL (
i 51

NC
$V̂eff

S ~ i !1 P̂S~ i !%, ~1!

where ĤC is the Hamiltonian of the isolated cluster andS
sums over all the ions in the lattice andi over theNC elec-
trons inC.

The V̂eff
S ( i ) term represents the potential energy of thei th

electron in the field due to the frozen groupS. This effective
potential may be expressed as

V̂eff
S ~ i !52

qS

r iS
1V̂nc

S ~r iS!2V̂x
S , ~2!

wherer iS5urW i2RW Su, qS is the net charge of ionSat RW S , V̂nc
S

corrects the electrostatic potential for deviations from
purely point-charge description, andV̂x

S accounts for the non
local exchange interaction.

When P̂S( i ) in Eq. ~1! is chosen as

P̂S~ i !5 (
klPS

ufkl
S &~22ekl

S !^fkl
S u, ~3!

this projection operator procures the cluster-lattice ortho
nality and corrects the energies for residu
nonorthogonalities.29 In this equationufkl

S & is an occupied
orbital with orbital energyekl

S . This flavor of the TSE equa
tions has been shown29 to be equivalent to a particular loca
izing potential in the Adams,30,31Gilbert,32 and Kunz33 local-
izing potential formalism.

A. Embedding in the AIPI method

To proceed further we will introduce some approxim
tions that will lead us to use a lattice description deriv
from calculations on the host. First, the orbitals of a giv
lattice center are described as linear combinations of Sla
type orbitals~STO’s! centered in the nucleus of that atom
ion:

fklm
S ~rW !5Ylm~u,w!(

a
Ckla

S xal
S ~r !, ~4!

where the coordinates (r ,u,w) refer to theS nucleus center,
andxal

S is a normalized STO:

xal5N alr nal21e2zalr , Nal5
~2zal!nal11/2

A~2nal!!
. ~5!

The superscriptS, which refers to the ion center, will b
omitted except when some confusion could appear.

From Eq. ~4! it can be seen that the radial part of th
orbital is assumed to be identical for all subspecies with
same principal and angular quantum numbers. This
equivalent to forcing the ions to maintain theO3

1 symmetry
characteristic of the free species. This approximation is
propriate for highly ionic materials, which are the main pu
posed targets of the present method, and it will allow us
derive the CAPS in the usual ECP format.
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Given the radial symmetry assumed for the local ion
wave functions, the nonclassical component of the Coulo
bic radial potential can be exactly written as

V̂nc~r !5(
l

(
a>b

rlab (
J521

nab22

vlab
J r Je2zabr , ~6!

with

vlab
J 52

nab!

~J11!! zab
nab2J S 12

J11

nab
D ~7!

for J>21, and

rlab5~22dab!NalNbl (
kPl

eklCklaCklb , ~8!

whereekl is the electronic population of thekl shell, nab
5nla1nlb , andzab5zla1zlb . The symmetrylab↔lba
has been used to reduce the sums in Eq.~6!.

The exchange operator, on the other hand, is convenie
written as the nondiagonal truncated spectral resolution24

V̂x
S5(

l
(

m52l

l

(
a,b

ualm,S&A~lab,S!^blm,Su, ~9!

where the sum runs over the basis functions ofS:

ualm,S&5xal
S ~r !Ylm~u,w!. ~10!

The elementsA(lab,S) are obtained from the overlap~S!
and exchange~K ! one-center matrices according to

A5S21KS21. ~11!

The above spectral resolution, introduced in the contex
environment representation by Huzinaga and collaborato24

would be exact if a complete multicenter basis set were u
to represent the local wave functions of each center. T
would require computing multicenter exchange integrals t
would dramatically complicate the calculations, and wou
prevent us from producing the CAPS’s in the usual E
form. The errors introduced in the exchange interactions
diminished by the use of large and diffuse, although mo
centric, basis sets for each ion, as it is regularly done in
AIPI calculations. Martı´n Penda´s et al.34 have discussed this
topic in length.

It is useful to notice that the projection operator can
written in the form used above for the exchange, namely

P̂S5(
l

(
m52l

l

(
ab

ualm,S&P~lab,S!^blm,Su, ~12!

with the P matrix elements being defined as

P~lab,S!5 (
kPl

Ckla
S ~22ekl!Cklb

S , ~13!

wherek runs over the occupied orbitals of angular quantu
number l and P(lab,S) is invariant to the change
2-2
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PRACTICAL EMBEDDING FOR IONIC MATERIALS: . . . PHYSICAL REVIEW B 64 104102
lab↔lba. Exchange and projection terms can then
given an equivalent treatment in the analysis and deve
ment of the CAPS.

B. Definition of the crystal adapted pseudopotentials

The target effective core potential form, as it is accep
in most popular quantum chemical codes,3–6,35 responds to
the following expression:36

Û52
q

r
1UL~r !1 (

l50

L21

(
m52l

l

uYlm&Ul2L~r !^Ylmu,

~14!

Ul2L~r !5Ul~r !2UL~r !, ~15!

where q is the nominal charge of the lattice ion, and t
spherical harmonics and radial functions are centered a
site of the atomic nucleus. TheUL(r ) and Ul2L(r ) radial
functions are expressed as linear combinations of Gauss
type functions~GTF’s!:

Ul~r !5(
i 51

N

Bi
l r ni

l
exp~2a i

l r 2!. ~16!

This form has to be compared with the AIPI embeddi
potential. After some manipulation of the equations in t
preceding subsection we can write

V̂AIPI 52
q

r
1V̂nc~r !1 (

l50

l max

(
m52l

l

uYlm& f l^Ylmu, ~17!

f l5(
a,b

$xal~r !@2A~lab!1P~lab!#xbl~r !%, ~18!

where l max is the maximum angular momentum for whic
the center has nonzero electronic population~e.g., l max51
for O22).

A direct comparison between Eqs.~14! and~17! indicates
that the CAPS will reproduce the AIPI embedding when

L5 l max11, ~19!

UL~r !5V̂nc~r !, ~20!

Ul2L~r !5 (
a,bPl

xal~r !@2A~lab!1P~lab!#xbl~r !.

~21!

According to Eq.~20!, UL(r ) represents the deviation o
the electrostatic lattice interaction with respect to a pur
point-charge lattice potential. At very short distancesUL(r )
behaves as

lim
r→0

@2q1rUL~r !#52Z, ~22!

showing that the electrons in the neighborhood tend to
the attraction of the bare nucleus when they are near eno
For very large distances, on the other hand,
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lim
r→`

@2q1rUL~r !#52q. ~23!

For 0,r ,`, UL(r ) is negative, thus being an attractin
potential. Furthermore, it must be noticed thatUL(r ) works
not only on the electrons but on the nuclei too, by modifyi
the Madelung field of the crystal.

The Ul2L(r ) potential acts only on the electrons. It co
tains the exchange attraction and the core projection re
sion. Its net effect depends on the angular momentum
the nature of the ion but at short distances the Pauli repul
must always be the dominant effect.

Notice that the equations given above yield the requi
pseudopotential in numerical form knowing only the co
orbitals of the center. At this point, we want to emphasize
two advantages of using the lattice orbitals given by the A
crystal calculations instead of free-ion orbitals. First, t
AIPI wave functions are self-consistently adapted to the g
bal crystalline environment. Second, many important anio
such as O22 and N32, are stable only within the crystal.

Once theUl(r ) functions have been numerically evaluat
for a given grid, we can find the linear combination of GTF
@Eq. ~16!# that best fits the numerical values. To do so w
define the weighted square error as

x25 (
k51

K FUl~r k!2Wl~r k!

sk
G2

, ~24!

where

Wl~r !5(
i 51

N

Bi
l r ni

l
e2a i

l r 2
. ~25!

The linear,Bi
l , and exponential,a i

l , parameters are obtaine
by minimizingx2. The fit is a delicate and nontrivial proces
if one wants to maintain a reduced number of GTF’s in t
expansion of the radial functions,Wl(r ). Three aspects o
the fitting procedure deserve to be described:~a! the optimi-
zation scheme;~b! the fitting grid; and~c! the set of weights,
$sk%.

With respect to the optimization scheme, two main diffe
ent strategies have been implemented. In the first techni
the linear coefficients are directly obtained by solving the
of linear equations that result from the minimum conditio
]x2/]Bi50. The exponential parameters can then
searched by means of a nonlinear optimization using,
instance, the Nelder and Mead simplex or the Fletch
Powell quadratic methods.37 It has been found that a geo
metrical series,a j5abj 21, can be used as a first step
optimizing the exponential parameters, with the values foa
and b easily obtained by minizingx2. When two or more
exponential parameters become degenerate, the linear e
tions start to be ill conditioned, and the whole scheme ri
being unstable. As an alternative, the Levenberg-Marqu
nonlinear least-squares method37 can be used to obtain, si
multaneously, both theBi

l anda i
l parameters.

The grid of radial distances can be chosen using eith
linear or a logarithmic series. Care must be taken to m
sure that both small and large values orr are well repre-
2-3
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FIG. 1. Numerical~left! and fitted~right! CAPS for the Mg21 ~up! and O22 ~down! ions in MgO. Notice that theUl(r ) functions have
very large positive and negative values. To improve the plot we use arctan@rUl(¹)# instead ofUl(r ) because~a! the arctan( ) transformation
maps the (2`,1`) interval to@2p/2,1p/2#; ~b! it preserves the sign of the argument; and~c! the smalluUu region is undistorted, since
limy→0y21arctany51.
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sented in the fitting. To this end, the set of weights,$sk%,
becomes important. The simplest model assigns eq
weights to all grid points,sk51. By using a weight propor-
tional to the value of the function,sk}uU(r k)u, we can try to
get a uniform relative error for all grid points.

III. CRYSTAL ADAPTED PSEUDOPOTENTIALS FOR THE
MgO CRYSTAL

Let us proceed now to determine crystal adapted pseu
potentials for the MgO crystal and test their behavior on
simulation of a number of neutral and charged defects. A
first step, we have done AIPI calculations25,26 at the experi-
mental geometry of the MgO crystal~lattice parametera
54.213 Å ), using the largest Slater-type Orbital~STO! ba-
sis sets proposed by Clementi and Roetti38 for O2 and
Mg21. These calculations produce the orbital functions a
energies for the ions in the crystal. It has been previou
shown that the AIPI calculations predict the equilibriu
properties and the equation of state of MgO in excell
agreement with the available experimental information.39

The second step corresponds to the numerical evalua
of theUl(r ) functions@Eqs.~19!–~21!# using the AIPI wave
functions of MgO. Our results have been plotted in Fig.
We can observe that the qualitative aspects of the CAPS’s
very similar in both ions. TheUl(r ) functions have very large
values near the nuclei, particularly forl 5s2L. For instance,
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the Us2d(r ) function for Mg21 is '7.73103 at r 50.06
bohr. As the angular quantum numberl increases, the radia
CAPS functions become less abrupt. AllUl(r ) functions
show a kind of shell structure, except the function that c
responds to the highest angular number,UL(r ), which is a
negative and monotonically increasing function. AllUl(r )
functions, on the other hand, approach zero as the dista
from the nucleus increases. Thed component becomes dom
nant at large distances.

We have found that 10–15 GTF’s by symmetry, with e
ponents forming a geometrical series to prevent linear dep
dencies, allows an excellent and burden-free fitting of
numerical functions. However, such a large expansion wo
add impractically to the computational expense of a clus
in-the-lattice calculation. Taking into account the norm
limitations of the available molecular codes, 4–5 GTF’s p
radial function appears as a practical limit.

Under such circumstances, the CAPS fitting become
delicate problem. Accurate and useful fits require careful t
ing of the different optimization techniques and initial valu
of the parameters. The CAPS’s contained in Table I con
tute a compromise between a good fitting and a short exp
sion of the numerical AIPI embedding potentials. We ha
used 5 Gaussians per symmetry to provide an accuracy b
than 6% at any point within the 0–3 bohr range. Figure
shows that the fitting is reasonable but not perfect.
2-4
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Cluster model and self-embedding consistency

A first test on the previously derived CAPS’s can be do
by simulating the perfect MgO crystal using a cluster-in-th
lattice calculation. The ability to pass this self-embedd
consistency test depends on~1! the cluster and lattice defini
tion; ~2! the basis set; and~3! the quantum technique used
determine the cluster wave function and energy.

The defect model is composed of a number of ions or
nized into three different regions. Obtaining the local wa
function and energy of the cluster~region I! is the objective,
so all the ions in this region add electrons and basis funct
to the quantum-mechanical calculation. Region II is made
a collection of ions closely surrounding the cluster and r
resented by CAPS’s. Region III, finally, comprises a num
of point charges that simulate the Madelung field acting
the cluster volume. Our previous experience has shown
the convenience of dividing the cluster ions in subsets. S
set Ia is made of all ions that are geometrically and electro
cally relaxed in the calculation. Subset Ib contains the

TABLE I. Mg21 and O22 CAPS obtained from the AIPI calcu
lation at the experimental geometry (a54.213 Å ) of MgO.

Mg21 ni Bi a i

s2d 2 202 752.811 410 000 259.834 541 790
2 66 180.876 835 000 70.585 531 596
2 5807.877 089 100 29.505 737 538
2 51.817 572 229 3.225 356 163
2 6.891 421 387 1.745 584 878

p-d 2 1369.025 952 200 483.582 480 190
2 21386.100 267 400 60.636 758 653
2 229.960 840 154 7.327 324 917
2 6.396 242 521 1.665 288 736
3 62.197 933 908 5.627 393 157

d 1 22.221 733 012 287.638 632 100
1 22.205 452 222 26.153 807 145
1 23.205 282 242 5.954 441 936
1 21.754 934 219 2.421 788 124
1 20.241 448 579 1.110 661 394

O22 ni Bi a i

s-d 2 179 14.022 901 000 66.130 524 945
2 3656.939 912 700 21.194 327 172
2 155.863 938 930 9.162 583 119
2 23.975 007 998 3.589 159 280
2 1.018 079 213 0.707 640 724

p-d 2 157.952 553 650 189.985 416 720
2 2154.908 003 120 21.450 770 682
2 26.435 733 717 2.870 414 868
2 20.444 560 609 0.248 527 343
3 0.253 338 453 0.306 313 051

d 1 21.943 867 876 143.104 813 360
1 21.888 123 352 12.807 469 812
1 22.987 294 027 2.209 899 990
1 22.523 696 496 0.763 464 773
1 20.350 404 621 0.280 899 723
10410
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maining cluster ions, whose positions are held fixed but th
wave functions are allowed to relax.40 The existence of the Ib
region attenuates the effect of the cluster-lattice boundary
the cluster wave function.40–42

All the defects examined in this work are centered eith
on a Mg or an O position of the perfect lattice. It is the
natural to organize its neighbors into shells of symmetrica
equivalent ions around the substituted position. According
we will use the notationAB

z –m.n.p to designate the defec
~following the common Kro¨ger-Vink notation43,44! and the
cluster model, wherem is the number of shells in regions
and II, n the number of shells in region I, andp the number
of shells forming region Ia.

The simplest defect center model explored
MgMg –4.1.1, in which a MgO6

102 quantum cluster is embed
ded by three shells of CAPS’s@6 Mg at (1,0,0), 12 Mg at

( 1
2 , 1

2 ,0), and 8 O at (12 , 1
2 , 1

2 )#, plus a set of 33616 point
charges that will be presented later in some detail. We h
done Hartree-Fock calculations using several different b
sets and the most interesting results have been represen
Fig. 2.

We can observe that the quality of basis sets associ
with the cluster ions has significant effects on the near
neighbor equilibrium geometry. The use of minimal or sm
basis sets, such as STO-3G or 3-21G,4 produces an equilib-
rium position that is reasonably close to the idealx150.5
value, but the nuclear potential is very asymmetric as
raises quite steeply forx1.0.5. The use of large basis set
which may include polarization functions but lack diffus
functions on the O centers, gives rise to absurd results, sh
ing an optimalx1'0.42 and an unphysical lowering of th
energy forx1>0.55. Physically sound results are recover
by including diffuse functions on the anions, and the use
any of 6-3111G, 6-31111G, 6-3111G(d,p) or
6-31111G(d,p) basis sets, for instance, produces alm
identical results.

FIG. 2. Total energy of the MgO6
102 cluster versus the crystal

lographic position of the six O ligands,x1. The calculations de-
picted on the plot are representative of the different types of beh
iors found by using many different basis sets. The MgMg 24.1.1
model was found to be self-embedding consistent when basis
like 6-3111G or larger were used, the role of the diffuse functio
on the O centers being essential for the consistency.
2-5
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VÍCTOR LUAÑA et al. PHYSICAL REVIEW B 64 104102
A similar test can be done for the O-centered cluste
Figure 3 depicts the nuclear potential for the OMg6

101 cluster
as obtained in the OO 24.1.1 model calculations. It can b
observed that the Mg shell collapses onto the lattice reg
no matter the quality of the basis set used in the calculat
This result must be seen as a serious limitation of the clu
model. We have previously discussed about the convenie
of using cluster models in which the outmost shell, at lea
of the quantum region is held fixed in position but otherw
allowed to relax electronically to respond to the changes
geometry of the inner quantum region.40–42The collapse ob-
served on the OMg6

101 cluster appears as an extreme case
the inconsistency of small clusters discussed in Ref. 40.

The simplest models in which we can relax the position
the first shell of neighbors and still maintain a buffering sh
within the cluster areMMg26.2.1 andXO26.2.1. These
contain 13 ions in the quantum region@the central ion, six

neighbors at (12 ,0,0), and six neighbors at (1,0,0)#, 32 ions

represented by CAPS’s@12 at (1
2 , 1

2 ,0), 8 at (12 , 1
2 , 1

2 ), 6 at

( 3
2 ,0,0), and 6 at (2,0,0)# plus the set of point charges.

Figure 4 shows that all pathologies found previously
the 4.1.1 models have now been corrected. Both
Mg21-centered and the O22-centered clusters exhibit a
equilibrium geometry for the first shell of neighbors that
very close tox150.5, and a rather symmetric nuclear pote
tial around the minimum. The 6.2.1 cluster model satisfi
the self-embedding consistency test, and will be used in
next section to simulate a large number of MgO defect c
ters.

Before leaving this section we want to give some cons
eration to the representation of the Madelung field. It is w
known that the electrostatic potential acting on a cluster e
tron constitutes a conditionally convergent series that m
be added up using special techniques~see, for instance, Ap
pendix B in Ref. 45!. These techniques are, however, n
available in most quantum mechanical molecular codes.
tunately, Winteret al.1,2 have shown that, at least for som
crystal structures, the shape of the Madelung field in

FIG. 3. Total energy of the OMg6
101 cluster versus the crystal

lographic position of the six Mg ligands,x1, for the OO 24.1.1
model. It is observed that the Mg ions collapse over the lattice w
independence of the quality of the basis set used in the calcula
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cluster region can be reproduced by a finite set of po
charges occupying their nominal positions and having th
nominal charges. The actual value of the potential, mu
more difficult to converge, can be corrected by adding
small number of ghost ions situated far away from the cl
ter, with appropriately adjusted charges. The importance
accurately reproducing the electrostatic potential in all dir
tions, not just along some particular axes, should be stre
as it can significantly influence the cluster electron density
the boundaries and the relative stability of the different
bital levels.

In the case of the rocksalt structure, the following set
point charges converges both to the shape and to the valu
the Madelung field in the cluster region:~a! all lattice ions
with crystal coordinates2XM<x,y,z<XM and a nominal
chargeqS; plus ~b! six ghost charges at the (6Xg,0,0) and
equivalent positions by symmetry, with a chargeqg adjusted
to reproduce the exact Madelung potential at the cluster c
ter. We have used in this workXM53/2 andXg525. This
corresponds to a set of 34216 point charges and reproduce
the exact Madelung field to an error less than 431027 har-
tree at random points inside a sphere centered at the (0,
position with radius equal to the unit cell lengtha.

A limitation of the current molecular codes when pe
forming cluster-in-the-lattice calculations, albeit small, d
serves some comment. By default, the total energy comp
for the cluster contains the self-energy of the embedd
point charges. This has to be removed to get the effec
energy of the cluster, i.e., the expectation value of the eff
tive Hamiltonian@Eq. ~1!#. Unphysical results would be ob
tained otherwise were cluster energies for different host
ometries compared.

IV. DEFECT CENTERS IN MgO

The final test on the usefulness of the embedding te
nique developed here is the examination of a large numbe
cationic and anionic defect centers:MMg and XO , respec-
tively. We have used the 6.2.1 model described previou

h
n.

FIG. 4. Total energy of the MgO6Mg6
21 and OMg6O6

22 clusters
versus the crystallographic position of the first shell of ligands,x1.
A 6-31G basis set has been used for Mg21 and 6-3111G for O22

ions.
2-6
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TABLE II. Results of the HF calculations on theMMg
z 26.2.1 cluster model of several cationic defects

MgO. The units used are hartrees for the cluster effective energy (Eopt ); eV for the relaxation and formation
energies; Å for the the NN displacementDR; and cm21 for the a1g NN breathing mode frequency.

Center M basis x1
opt Eopt DRrelax DErelax va1g

MgMg
3 6-31G 0.507 206 21852.107 475 10.030 20.060 607

Center M basis x1
opt Eopt DR DErelax DEf

I DEf
II va1g

BMg
• 6-31G 0.455 679 21676.757 596 20.217 21.670 240.221 7.460 559

AlMg
• 6-31G 0.472 252 21894.310 298 20.147 20.901 228.199 1.528 638

BeMg
3 6-31G 0.497 565 21667.066 241 20.041 20.006 24.374 0.348 551

CaMg
3 TZV 0.525 984 22329.124 307 10.079 21.085 8.227 3.325 700

CaMg
3 Lan2DZ 0.528 261 21688.649 543 10.089 21.271 6.982 2.087 702

SrMg
3 Lan2DZ 0.538 698 21682.376 908 10.133 22.826 12.542 6.382 758

BaMg
3 Lan2DZ 0.553 072 21676.957 612 10.193 26.734 19.767 12.087 855

ZnMg
3 6-311G 0.510 893 23430.093 134 10.016 20.156 20.004 2.544 644

LiMg8 6-31G 0.534 923 21659.848 798 10.117 21.388 18.571 2.577 621
NaMg8 6-31G 0.541 548 21814.223 206 10.145 22.191 19.915 3.550 656
vMg9 — 0.559 967 21652.044 909 10.222 24.645 24.038 12.717 707
vMg9 Mg:6-31G 0.559 497 21652.061 303 10.220 24.266 33.592 12.271 684
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The equilibrium geometry of the first shell of neighbors h
been determined by performing single point calculations o
grid of 16 different geometries withx1 going from 0.34 to
0.64. This totally symmetrical breathing (a1g) movement of
the nearest neighbors~NN’s! has been the only geometr
relaxation allowed in our calculations. The restrict
Hartree-Fock~RHF! method has been used on the close
shell clusters and the unrestricted Hartree-Fock~UHF!
method on the open-shell ones. All calculations have b
done with theGAUSSIAN943 and GAMESS4 codes, using very
strict convergence criteria. Particular care has been pai
secure that all calculations on a center converged to the s
electronic state. Correlation energy has been shown to
‘‘no crucial role’’ on the equilibrium properties of bulk an
surfaceF centers46,47 and we expect the same behavior f
the other defects examined here.

The main results are presented in Tables II and III. T
6-31G and 6-3111G basis sets have been used for the M
and O atoms, respectively. The bases used for the othe
oms in the impurity centers are collected in the tables. T
equilibrium geometry (x1

opt ) and energy (Eopt ) and the vi-
bration frequency (va1g

) for the breathing movement of th
NN’s have been carefully determined by Marquar
Levenberg least squares fitting of a high-degree polynom
to the cluster effective energy.

Our results show an outwards NN relaxation
10.030 Å in MgMg and an inwards relaxation of
20.006 Å in OO , which correspond to relaxation energi
of 20.060 and20.005 eV, respectively. This is a good d
gree of self-consistency, according to our experience.

Our predictions of the NN relaxation at the defect cent
have been corrected for this small error in the calculation
the host. Accordingly, the NN displacement at a cationic
fect is determined as
10410
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DR5a~x1
opt2x1

opt@MgMg
3 # !, ~26!

and similarly for an anionic defect.
On the other hand, several definitions have been use

the literature for the formation energy of the defect. The t
main conventions use either ions or neutral atoms, resp
tively, according to the formal chemical reactions:

~ I! Mg21:MgO(s)1A(g)
21→A21:MgO(s)1Mg(g)

21

and

~ II ! Mg21:MgO(s)1A(g)→A21:MgO(s)1Mg(g)

for the cationic defects, and similarly for the anionic one
Very large differences are found between the formation
ergies in both conventions:DEf

I and DEf
II , respectively. In

addition, the Gaussian basis sets routinely used for the
lecular calculations are rather far away from the Hartr
Fock limit for free atoms and anions, which adds sign
cantly to the errors in the formation energies. Particula
difficult is obtaining a physically significant reference ener
for O22 and S22 because of their instability as free, ga
phase entities. To avoid these problems when comparing
results to those by other researchers, we list both type
formation energies in Tables II and III.

Let us now examine the most significant aspects of
predictions. We can observe that the defects can be natu
grouped by their type~cationic or anionic! and charge. As a
general rule, cationic defects tend to produce large inwa
displacements when charged positively, small relaxation
neutral, and outwards displacements when charged n
tively. The opposite is true for the anionic defects. This tre
is in agreement with the sign of the Madelung field at t
Mg21 and O22 host positions, revealing that the phenom
enon is largely influenced by the electrostatic interaction
2-7
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TABLE III. Results of the HF calculations on theXO
z 26.2.1 cluster model of several anionic defects in MgO. The units used are

same as in Table II.

Center M basis x1
opt Eopt DRrelax DErelax va1g

OO
3 6-3111G 0.498 532 21728.871 865 20.006 20.005 678

Center A basis x1
opt Eopt DR DErelax DEf

I DEf
II va1g

HO
•• (H0) 6-3111G 0.550 052 21653.644 129 10.217 21.492 35.801 25.784 458

vO
•• (F12) — 0.547 710 21653.181 805 10.207 26.126 34.809 24.791 784

vO
•• (F12) H:6-3111G 0.548 006 21653.191 811 10.208 25.667 34.537 24.519 763

vO
•• (F12) O:6-3111G 0.547 801 21653.184 417 10.208 25.718 34.738 24.720 766

HO
• (H2) 6-3111G 0.523 563 21654.239 927 10.105 21.216 19.269 9.571 681

F1 — 0.526 777 21653.545 595 10.119 21.656 24.909 14.892 701
F1 H:6-3111G 0.520 839 21653.615 439 10.094 21.196 16.693 12.991 768
F1 O:6-3111G 0.523 693 21653.457 947 10.106 21.219 24.277 17.277 666
FO

• 6-3111G 0.522 254 21753.246 715 10.100 21.112 17.188 5.814 686
ClO

• 6-3111G~d! 0.535 466 22113.253 617 10.156 23.407 21.029 8.530 747
BrO

• 6-31111G~d! 0.539 993 24227.026 553 10.175 24.600 23.642 11.145 766
SO

3 6-3111G~d! 0.520 716 22051.445 510 10.093 21.193 8.795 3.217 756
SeO

3 6-31111G~d! 0.527 520 24053.622 241 10.122 22.162 13.133 6.954 761
F — 0.507 619 21653.678 726 10.038 20.068 21.287 11.269 489
F H:6-3111G 0.498 570 21653.766 094 0.000 20.003 25.343 8.892 597
F O:6-3111G 0.500 991 21653.759 796 10.010 20.002 5.418 9.063 585
NO8 6-3111G~d! 0.481 536 21708.317 033 20.072 20.730 211.141 4.411 688
PO8 6-3111G~d! 0.512 497 21994.419 305 10.059 20.413 4.356 9.877 729
AsO8 6-31111G~d! 0.517 564 23887.780 659 10.080 20.746 8.768 12.660 689
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MMg
• centers. B31 and Al31 are considerably smalle

than Mg21 and induce significant inwards NN relaxations
20.22 and20.15 Å , respectively. Both centers are u
stable according to criterion II, but the formation energies
very large and negative according to criterion I. The va
DEf

I (AlMg
• )5228.2 eV can be compared with the estim

tion of Colbourn and Mackrodt48 using the shell model and
Gordon-Kim type potentials:230.29 eV.

Our cluster calculations do not take into account the lo
range polarization energy associated to the formation o
charged defect. Using a simple dielectric continuum mod
the polarization energy around a cavity of radiusR is given
by49

Epol 5
Q2

2R
~121/e0!, ~27!

where Q is the net charge of the defect ande0 the static
dielectric constant of MgO. UsingR5aA5/2 ~the position of
the first neighbor shell beyond the cluster! we estimateEpol
to be'1 eV for theQ561, and'4 eV for theQ562
defects. Going beyond this crude but widely used model49–54

can be done by calculating neutral associations of def
and obtaining a statistical average over the many differ
charge compensation mechanisms55 but this is well beyond
the current possibilities of presentab initio calculations.

MMg
3 centers. The replacement of Mg21 by another diva-

lent closed-shell ion produces a very simple result, eas
interpret in terms of the relative ionic radii ofM21 and
10410
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Mg21. Accordingly, the NN shell relaxes inwards whenM
5Be and outwards for the other alkaline-earth metals a
Zn. The actual value of the relaxation is, however, sign
cantly smaller than the difference in the generally accep
ionic radii:56 0.45 (Be21), 0.720 (Mg21), 1.00 (Ca21), 1.18
(Sr21), 1.35 (Ba12), and 0.740 (Zn12). The net effect of the
MgO lattice is then to damp the differences in size amo
the alkaline-earth-metal cations. The formation energy of
MMg

3 centers is positive, according to criterion II, and i
creases as the difference in size betweenM21 and Mg21

increases. If criterion I is used, instead, the formation en
gies are lowered by 2–7 eV and, in fact, BeMg

3 becomes
stable. Our values ofDEf

I for BeMg
3 (24.37 eV) and CaMg

3

(18.23 eV) are in reasonable agreement with the sh
model calculations by Colbourn and Mackrodt:48 23.57 and
15.82 eV, respectively.

The breathing mode vibration frequency, on the oth
hand, increases with the size of theM21 ion. This is not a
mass effect, as the effective mass of the 1a1g mode, 6mO , is
independent ofM21, but a direct consequence of the increa
ing force constant asM21 becomes larger.

It is worth mentioning that the calculations on the hea
ions Sr21 and Ba21 have been done using Hay and Wa
relativistic ECP’s to represent the core electrons,57,13,58 be-
cause Gaussian all-electron basis sets of quality are not a
able. Test calculations on the CaMg

3 center show that the
valence-electron calculations agree with the all-electron
sults within 0.01 Å on the center geometry and within
2-8
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cm21 on the nuclear potential curvature. This agreement e
dences the usefulness of the valence-electron calculation
the heavy elements.

MMg8 centers. The net charge of the defect,21, domi-
nates the center geometry and both LiMg8 and NaMg8 induce a
significant outwards relaxation:10.12 and10.15 Å , re-
spectively, very similar to the values reported by Grim
et al.49 The formation energy of both centers is very simila
3–4 eV using criterion II and 19–20 eV using criterion
The last value can be compared to the shell-model class
estimation of 16.3 (LiMg8 ) and 18.6 eV (NaMg8 ).48

Mg21 vacancy(vMg9 ) center. This highly charged defec
induces a very large outwards relaxation on the NN sh
10.22 Å . We could also expect a noticeable relaxation
even further shells of neighbors, which has not been ta
into account in our calculations. In consequence, our ca
lated formation energy,'34 eV ~criterion I! should be con-
sidered as an upper limit value. As a comparison, the sh
model classical calculations by Colbourn and Mackrod48

produceDEf
I 5125.41 eV after allowing for the relaxatio

of many shells around the defect center. Gibsonet al., on the
other hand, predictDEf

II 5113.82 eV,59 close to our value
of 112.27 eV.

We have examined the effect of the basis set on the
cancy center by doing the calculation, both maintaining
Mg21 basis at the vacancy position and removing it. Bo
calculations show a negligible difference in the center geo
etry, but the use of basis functions at the vacancy posi
reduces the total energy of the cluster by some 0.5 eV
the 1a1g breathing frequency by 23 cm21.

XO
• centers. The positive charge of the defect produces

significant outwards relaxation (10.10 Å for FO
• ), which is

further enhanced if the ionic radius of the impurity anion
larger than that of the oxide. The relaxations are, howe
quite different from the differences in ionic radii:56 1.19
(F2), 1.26 (O22), 1.67 (Cl2), and 1.82 Å (Br2). We see,
again, that the lattice damps the difference in size betw
the substitute and the host ions. On the other hand, our v
for DEf

I (FO
• )5117.19 eV agrees with the shell-model e

timation reported by Catlow:60 116.31 eV. The center sta
bility decreases in passing from F to Cl and Br, and
nuclear potential curvature, as measured byva1g , increases
along the same series.

XO
3 centers. Our calculations predict outwards relaxatio

for both SO
3 and SeO

3 centers, but much smaller than the ion
radii difference~1.40, 1.80, and 1.98 Å for O22, S22, and
Se22, respectively56!. Our results,14.4% and15.8%, are
more in line with the previous ICECAP calculations by Pa
dey et al.:61 ;6% and;8% outwards NN displacement
for SO

3 and SeO
3 , respectively.

XO8 centers. The NO8 center shows the tendency of neg
tive anionic defects to suffer small inwards NN relaxation
In the case of the PO8 and AsO8 centers, the bigger size of th
third- and fourth-period anions works against this tende
to produce a small outwards NN displacement.

The results on the N–As, O–Se, and F–Br groups of
purities show that for a given group the difference betwe
10410
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the third- and fourth-period ions is significantly smaller th
that between the second- and third-period ions. In ot
words, the head of group elements~N, O, F! behave differ-
ently from the other elements in their group. This we
known effect for pure crystals and gas phase molecules
pears again in substitutional impurities.

F centers [F[(vO
••12e8)3, F1[(vO

••1e8)•, F12[vO
••]:

Our calculations predict a negligible distortion of the latti
for the neutralF center, significant outwards NN relaxatio
for F1 (10.09 Å ), and even larger outwards displaceme
for F12 (10.21 Å ). As in the case of the cationic vacanc
we have explored the effect of including or not basis
functions at the oxygen vacancy, i.e., using floating ba
functions. The smallest cluster energy is obtained when a2

basis set is used on this position. The effect is small on
NN geometry~0.04 Å in the worst case:F center with no
basis! but it can be of several eV’s on the formation ener
of the F andF1 centers.

F centers are the best investigated MgO defects, b
from an experimental62–68 and from a theoretical point o
view ~Refs. 46,47,49,50,53,54,59,69–76!. Our results com-
pare well with, for instance, the EMBED calculations b
Scorzaet al.46 and the density-functional theory~DFT! 32-
molecule supercell calculations by Kantorovichet al.74 The
local density approximation~LDA ! 8-molecule supercell cal
culations by Wang and Holzwarth71 differ, however, in pre-
dicting much smaller relaxations for the chargedF centers.
Our DEf

II formation energies, on the other hand, do ag
with the classical Mott-Littleton simulations60,77 as well as
with other quantum-mechanical calculations.46,74

V. CONCLUSIONS

We have presented a method of deriving crystal adap
pseudopotentials for positive, neutral, or negative atom
species. Our CAPS’s provide a practical solution to the e
bedding problem for cluster-in-the-lattice calculations,
they are immediately supported in many available molecu
codes.

To test the accuracy and reliability of our technique, w
have considered a well-known ionic compound, MgO. Eith
a MgO6Mg6 or OMg6O6 quantum cluster embedded in th
CAPS plus a carefully chosen set of point charges has b
used to determine the equilibrium properties of several c
ionic and anionic, neutral, and charged defect centers.
results are overall consistent and do compare well with p
vious calculations using many different techniques. T
comparison should not hide the fact that we have use
single method and cluster model, rather than a tailo
scheme for each type of defect center. We believe that
CAPS can be a valuable resource for other researchers
we plan to derive and make publicly available the potenti
for some of the most common ions and host lattices.
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44F. A. Kröger, The Chemistry of Imperfect Crystals~North-
Holland, Amsterdam, 1964!.

45C. Kittel, Introduction to Solid State Physics, 7th ed.~Wiley, New
York, 1996!.

46E. Scorza, U. Birkenheuer, and C. Pisani, J. Chem. Phys.107,
9645 ~1997!.

47F. Illas and G. Pacchioni, J. Chem. Phys.108, 7835~1998!.
48E. A. Colbourn and W. C. Mackrodt, J. Mater. Sci.17, 3021

~1982!.
2-10



s.

c-

fr.

ers,

Y.

v.

Y.

m.

v.

i.

. B

PRACTICAL EMBEDDING FOR IONIC MATERIALS: . . . PHYSICAL REVIEW B 64 104102
49R. W. Grimes, C. R. A. Catlow, and A. M. Stoneham, J. Phy
Condens. Matter1, 7367~1989!.

50J. M. Vail, A. H. Harker, J. H. Harding, and P. Saul, J. Phys. C17,
3401 ~1984!.

51A. D. Vita, M. J. Gillan, J. S. Lin, M. C. Payne, I. Sˇ tich, and L. J.
Clarke, Phys. Rev. B46, 12 964~1992!.

52M. J. Gillan, I. Manassidis, and A. D. Vita, Philos. Mag. B69,
879 ~1994!.

53C. Pisani, F. Cora`, R. Dovesi, and R. Orlando, J. Electron Spe
trosc. Relat. Phenom.69, 1 ~1994!.

54A. M. Ferrari and G. Pacchioni, J. Phys. Chem.99, 17 010
~1995!.

55W. H. Gourdin and W. D. Kingery, J. Mater. Sci.14, 2053~1979!.
56R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Dif

Theor. Gen. Crystallogr.32, 751 ~1976!.
57P. J. Hay and W. R. Wadt, J. Chem. Phys.82, 270 ~1985!.
58P. J. Hay and W. R. Wadt, J. Chem. Phys.82, 299 ~1985!.
59A. Gibson, R. Haydock, and J. P. LaFemina, Phys. Rev. B50,

2582 ~1994!.
60C. R. A. Catlow, Cryst. Lattice Defects Amorphous Mater.14,

223 ~1987!.
61R. Pandey, J. Zuo, and A. B. Kunz, Phys. Rev. B39, 12 565

~1989!.
62W. P. Unruh and J. W. Culvahouse, Phys. Rev.154, 861 ~1967!.
63L. A. Kappers, R. L. Kroes, and E. Hensley, Phys. Rev. B1, 4151

~1970!.
10410
:

,

64A. J. Tench and M. J. Duck, J. Phys. C6, 1134~1973!.
65Y. Chen, R. Gonzalez, and O. E. Schow, and G. P. Summ

Phys. Rev. B27, 1276~1983!.
66G. P. Summers, T. M. Wilson, B. T. Jeffries, H. T. Tohver,

Chen, and M. M. Abraham, Phys. Rev. B27, 1283~1983!.
67J. Tombrello, H. T. Tohver, Y. Chen, and T. M. Wilson, Phys. Re

B 30, 7374~1984!.
68G. H. Rosenblat, M. W. Rowe, G. P. W. Jr., R. T. Williams, and

Chen, Phys. Rev. B39, 10 309~1989!.
69D. E. Taurian, A. H. Tang-Kai, and V. Lobatch, J. Phys. Che

Solids47, 59 ~1986!.
70B. M. Klein, W. E. Pickett, L. L. Boyer, and R. Zeller, Phys. Re

B 35, 5802~1987!.
71Q. S. Wang and N. A. W. Holzwarth, Phys. Rev. B41, 3211

~1990!.
72J. M. Vail, J. Phys. Chem. Solids51, 589 ~1990!.
73K. Jackson, M. R. Pederson, and B. M. Klein, Phys. Rev. B43,

2364 ~1991!.
74L. N. Kantorovich, J. M. Holender, and M. J. Gillan, Surf. Sc

343, 221 ~1995!.
75R. A. Evarestov, P. W. M. Jacobs, and A. V. Leko, Phys. Rev

54, 8969~1996!.
76G. Pacchioni, A. M. Ferrari, and G. Ierano`, Faraday Discuss.106,

155 ~1997!.
77R. W. Grimes and C. R. A. Catlow J. Am. Ceram. Soc.73, 3251

~1990!.
2-11


