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Practical embedding for ionic materials: Crystal-adapted pseudopotentials for the MgO crystal
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We present a method of deriving effective core potenti&l€P’S for negative and positive ions. These
ECP’s are adapted to ionic crystals and can be used as components of an embedding model in most quantum
chemistry codes. Cluster-in-the-lattice calculations of several defects and impurity centers in MgO are exam-
ined as a test.

DOI: 10.1103/PhysRevB.64.104102 PACS nuniber61.72.Bb, 61.72.Ji, 31.70.Dk

[. INTRODUCTION tive ions can be used to derive the ECP’s, our procedure uses
the ionic descriptions self-consistently adapted to the crystal
Winter, Pitzer, and Templ&/NVPT) introduced in 1987 the environment provided by thab initio perturbed ion(AlIPI)

idea of using effective core potentialECP’9 to represent method®>?®In particular, the use of the AIPI wave functions
the quantum embedding effects of the crystalline environsolves the problem posed by multinegative ions, which are
ment in cluster-in-the-lattice  calculations of ionic generally unstable in gas phase and for which empirical reci-
materialsi? In such calculations, a finite set of point chargespes such as Watson spheres provide only very crude approxi-
along with the ECP’s is also commonly used. Its role is tomations. From now on, we will use the term “crystal adapted
mimic, as faithfully as possible, the Madelung field of the pseudopotentims’(CAPS’g to refer to the ECP’s derived
crystal. Generally, the embedding ECP technique is intendegith the method proposed here.
(a) as a method for the addition to the cluster Hamiltonian of  The rest of the article is organized as follows. The embed-
an interaction that physically exists in the crystal, &bdas  ging method is presented and analyzed in the next section.
a scheme to effectively solve some of the technical problemgyst4| adapted pseudopotentials for the MgO crystal are ob-
that plague quantum cluster calculations applied 0 CONg,inay in Sec. 111, In this section we also analyze the cluster-

densed matter. For example, the ECP’s provide a bamq%\ttice consistency, using results of calculations on pure

against the unphysical escape “towards the lattice” of the

. . IYIgO, and discuss the advantages and difficulties of deficient
cluster electron density and also improve the convergence g : " .
Cluster-lattice partitions. A well-tested cluster model is used

the self-consistent-field process in total energy calculations. Sec. IV to determine th ilibri " ; |
The WPT embedding scheme can be immediately used il >€C- 0 determine the equilibrium properties ot severa

most current quantum chemistry cotiésas they support cationic and anionic MgO defect ce_nters, inclu_ding both neu-

assigning of ECP’s and point charges to arbitrary positions ifral and ch_arged defects. The main conclusions are finally

the lattice. This is, probably, the best practical advantage dfresented in Sec. V.

the WPT embedding over other techniques proposed so

far.”~* One of its most serious difficulties, however, is the

unavailability of ECP’s for negative anions. This is a conse- Il. METHOD

qgquence of methods traditionally used to derive the . . .

ECP’s>~*#that require one or more populated orbitals out of Many local properties of pure and defective solids can be

the core for which the pseudopotential is being derived. Thigtudied with the help of cluster-in-the-lattice calculations.

means, for instance, that afi-electronsolution of B~ must This .type of calculation is designed to determine the wave

be obtained before deriving the pseudopotential for F function and energy levels of a system made of a small num-
Even with this limitation, the WPT embedding has provedPer of atoms or iongthe clustej embedded into the rest of

to be a valid technique and it has been used in a number ¢he crystal(the lattice). Since the concept of embedding in-

problems and compounds, including TtaF and cludes mathematical and physical consistency between the

Cu':NaCI?® v +2;|\/|g|:2,16 Cr3+:A|203,17 and Cluster and lattice wave functions, it can properly be de-

La,CuQ,. 1823 scribed as a case of electronic group separafioand ana-

To alleviate the problem of deriving ECP’s for anions, we lyzed in terms of the electronic separability the¢R5E) of
propose a procedure in this paper that is based on the orbitdcWeeny’ and Huzinag&®
description of the core being simulated and that does not The cluster () is the electron group most interesting for
depend on the existence of any valence set out of this coreur problem. The lattice £) is divided into a number of
This procedure may be viewed as a translation of dhe atoms or ions whose representation is known in advance and
initio model potentialAIMP) formalism of Huzinagat al>*  kept frozen during the cluster calculation. The cluster wave
to the ECP formalism. function is obtained by solving the Fock equations corre-

Although free-ion orbital descriptions of positive or nega- sponding to the effective Hamiltonian
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R A Ne . Given the radial symmetry assumed for the local ionic
Ho=H+ 2>, > {V3(i)+PS(i)}, (1)  wave functions, the nonclassical component of the Coulom-
SeLi=1 bic radial potential can be exactly written as
where ¢ is the Hamiltonian of the isolated cluster asd Nap—2
sums over all the ions in the lattice andver theN, elec- Vad D=2 > pran 2 w3 prle e (6)
trons inC. A a=b J=-1

The V4(i) term represents the potential energy of itte  \ith
electron in the field due to the frozen gro8pThis effective

potential may be expressed as , Nyp! J+1
Wyapb™ — nap—J | — @)
(J+1)1" Nab
oS e 0s =~ S ~S ab
Vei(1) = = —+Vidris) =V, 2
is forJ=—1, and
wherer s=|ri—Rg, % is the net charge of ioBatRg, V3,
corrects the electrostatic potential for deviations from the p)\ab=(2—5ab)./\/a)\./\/'b)\2 € CinaCrb s (8)
purely point-charge description, aﬁ@ accounts for the non- ke
local exchange interaction. wheree,, is the electronic population of thiex shell, n,y,
When |55(i) in Eq. (1) is chosen as =Ny, +Nyp, andlap=Grat Op - The symmetrhab«—Aba
has been used to reduce the sums in (Bj.
g . s s s The exchange operator, on the other hand, is conveniently
P (|)=kés [ (—2€0)( Pl () written as the nondiagonal truncated spectral resoltftion

this projection operator procures the cluster-lattice orthogo- A >

nalit;rl) Jand cporrects P the energies for residu%l Vf:; ;A ;} lakw, S)A(Nab,S)(bAu, S|, (9)
nonorthogonalitied® In this equation| ¢y, ) is an occupied " ’

orbital with orbital energyeg, . This flavor of the TSE equa- Where the sum runs over the basis functionsSof

tions has been showhto be equivalent to a particular local- s

izing potential in the Adam#3! Gilbert 2 and KunZ® local- |an 1, S) = Xar (1) Y (6, ). (10

izing potential formalism. The elementA(\ab,S) are obtained from the overlai®)

and exchangéK) one-center matrices according to
A. Embedding in the AIPI method

—_c1 -1
To proceed further we will introduce some approxima- A=S KS 1D

tions that will lead us to use a lattice description derivedthe apove spectral resolution, introduced in the context of
from calculations on the host. First, the orbitals of a givenspyironment representation by Huzinaga and collaborafors,

lattice center are described as linear combinations of Slate(yq,1d be exact if a complete multicenter basis set were used
type orbitals(STO's) centered in the nucleus of that atom or 1, represent the local wave functions of each center. This

ion: would require computing multicenter exchange integrals that
would dramatically complicate the calculations, and would

¢Ew(r):Ym(9"P)z CS xS (1), (4  prevent us from producing the CAPS’s in the usual ECP

a form. The errors introduced in the exchange interactions are

diminished by the use of large and diffuse, although mono-

where the coordinates (0, ¢) refer to theSnucleus center,  contric, hasis sets for each ion, as it is regularly done in the

and ;) is a normalized STO: AIPI calculations. Marn Penda et al3* have discussed this
g et 112 topic'in length. . o
Yar =N le~fal AL :( Car) . (5 It is useful to notice that the projection operator can be
ar—oran ’ ak J2n ! written in the form used above for the exchange, namely,
The superscriptS which refers to the ion center, will be ~ A
omitted except when some confusion could appear. PS=; ZA % lau,S)P(Nab,S)(bAu,S|, (12)
Pt

From Eq.(4) it can be seen that the radial part of the
orbital is assumed to be identical for all subspecies with theyith the P matrix elements being defined as
same principal and angular quantum numbers. This is
equivalent to forcing the ions to maintain tks symmetry
characteristic of the free species. This approximation is ap- P()\ab,S)=k§E:)\ Cfxa(_zekx)cfw’ (13
propriate for highly ionic materials, which are the main pur-
posed targets of the present method, and it will allow us tavherek runs over the occupied orbitals of angular quantum
derive the CAPS in the usual ECP format. number A and P(\ab,S) is invariant to the change
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Aab—\ba. Exchange and projection terms can then be lim[—q+ri (r)]=—q. (23
given an equivalent treatment in the analysis and develop- [

ment of the CAPS. . . . .
For 0<r<w, U, (r) is negative, thus being an attracting

potential. Furthermore, it must be noticed thf(r) works

not only on the electrons but on the nuclei too, by modifying
The target effective core potential form, as it is acceptedhe Madelung field of the crystal.

in most popular quantum chemical code&3 responds to Thel, _ (r) potential acts only on the electrons. It con-

the following expressior® tains the exchange attraction and the core projection repul-

sion. Its net effect depends on the angular momentum and

B. Definition of the crystal adapted pseudopotentials

L-1 N
~ q the nature of the ion but at short distances the Pauli repulsion
U=~ r*“L(”ﬂEO ,L:E—A Y- (DYl must always be the dominant effect.
(14) Notice that the equations given above yield the required
pseudopotential in numerical form knowing only the core
Un_L(N)=U(r)—U.(r), (15)  orbitals of the center. At this point, we want to emphasize the

. . L two advantages of using the lattice orbitals given by the AIPI
where q is the nominal charge of the lattice ion, and the o, a1 calculations instead of free-ion orbitals. First, the
spherical harmonics and radial functions are centered at thgip| waye functions are self-consistently adapted to the glo-
site 9f the atomic nucleus. TWL(r) anq L{)\__L(r) radial __bal crystalline environment. Second, many important anions,
functions are expressed as linear combinations of Gaussiagy,ch as & and N~. are stable only within the crystal.
type functions(GTF's): Once thd/(r) functions have been numerically evaluated

N for a given grid, we can find the linear combination of GTF’s
| . .
U(r)=">, Blr'exp —alr?). (16)  [Edq.(16)] that best fits the numerical values. To do so we
i=1 define the weighted square error as

This form has to be compared with the AIPI embedding K Tu —W 2

. . . . . 2 1(re) (')
potential. After some manipulation of the equations in the X°= > |, (24
preceding subsection we can write k=1 Tk

q lmax A where
Vap = - F*Vnc(f)+;0 E}\ Y (Yl (D) N o
=0 <2
W(n=2 Birme i, (25
i=1

f"zg, Dan(NL=AMab)+POab) [xu (N}, (18 g0 linear,B!, and exponentialy! , parameters are obtained

i , ~ by minimizing x?. The fit is a delicate and nontrivial process
where |,y is the maximum angular momentum for which i’ one wants to maintain a reduced number of GTF's in the
the center has nonzero electronic populatiery., Imax=1  expansion of the radial function)i(r). Three aspects of
for O°7). _ o the fitting procedure deserve to be describ@ithe optimi-

A direct comparison between Eqd4) and(17) indicates  ation scheme(b) the fitting grid; andc) the set of weights,
that the CAPS will reproduce the AIPI embedding when (o).

With respect to the optimization scheme, two main differ-

L=lmax+1, (19 ent strategies have been implemented. In the first technique,
- the linear coefficients are directly obtained by solving the set
UL(r)=V((r), (200 of linear equations that result from the minimum condition,
dx?/9B;=0. The exponential parameters can then be
- _ A P\ _ _searched by means of a nonllnear optimization using, for
Up-(r) a,bzex Xan(DL=Aab) +P(Aab) Lxu(r) instance, the Nelder and Mead simplex or the Fletcher-

(21 Powell quadratic method‘§.lt has been found that a geo-
) o metrical seriesa;=abl"!, can be used as a first step in
According to Eq.(20), ¢ (r) represents the deviation of optimizing the exponential parameters, with the valuesafor
the electrostatic lattice interaction with respect to a purelygnd p easily obtained by minizing’2. When two or more
point-charge lattice potential. At very short distan¢g¢r)  exponential parameters become degenerate, the linear equa-
behaves as tions start to be ill conditioned, and the whole scheme risks
. being unstable. As an alternative, the Levenberg-Marquardt
r“i':)[_qHu'—(r)]:_Z' (22 nonlinear least-squares metfibdan be used to obtain, si-
multaneously, both thB! and«! parameters.
showing that the electrons in the neighborhood tend to see The grid of radial distances can be chosen using either a
the attraction of the bare nucleus when they are near enouglinear or a logarithmic series. Care must be taken to make
For very large distances, on the other hand, sure that both small and large valuesroare well repre-
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FIG. 1. Numerical(left) and fitted(right) CAPS for the Mg" (up) and G~ (down) ions in MgO. Notice that théf,(r) functions have
very large positive and negative values. To improve the plot we use fgteW) | instead of4(r) becausda) the arctan() transformation
maps the ¢, +) interval to[ — w/2,+ w/2]; (b) it preserves the sign of the argument; dopthe small|4| region is undistorted, since
limy_ oy~ *arctary=1.

sented in the fitting. To this end, the set of weigHisy},  the 24;_4(r) function for Mg" is ~7.7x10° at r=0.06
becomes important. The simplest model assigns equajohr. As the angular quantum numbencreases, the radial
weights to all grid pointsg= 1. By using a weight propor- CAPS functions become less abrupt. Al(r) functions
tional to the value of the functiorry|2/(ry)|, we can try o show a kind of shell structure, except the function that cor-

get a uniform relative error for all grid points. responds to the highest angular numiér(r), which is a
negative and monotonically increasing function. 24l(r)
. CRYSTAL ADAPTED PSEUDOPOTENTIALS FOR THE functions, on the other hand, approach zero as the distance
MgO CRYSTAL from the nucleus increases. Theomponent becomes domi-

Let us proceed now to determine crystal adapted pseuddi@nt at large distances. _
potentials for the MgO crystal and test their behavior on the We have found that 10-15 GTF's by symmetry, with ex-
simulation of a number of neutral and charged defects. As Ronents forming a geometrical series to prevent linear depen-
first step, we have done AIPI calculatidné® at the experi- dencies, allows an excellent and burden-free fitting of the
mental geometry of the MgO Crysté]attice parametera numerical functions. However, such a Iarge expansion would
=4.213 A), using the largest Slater-type Orbit&llO) ba-  add impractically to the computational expense of a cluster-
sis sets proposed by Clementi and Ré&tfor O~ and in-the-lattice calculation. Taking into account the normal
Mg?". These calculations produce the orbital functions andimitations of the available molecular codes, 4-5 GTF's per
energies for the ions in the crystal. It has been previouslyadial function appears as a practical limit.
shown that the AIPI calculations predict the equilibrium  Under such circumstances, the CAPS fitting becomes a
properties and the equation of state of MgO in excellenidelicate problem. Accurate and useful fits require careful try-
agreement with the available experimental information. ing of the different optimization techniques and initial values

The second step corresponds to the numerical evaluatioof the parameters. The CAPS’s contained in Table | consti-
of thel4(r) functions[Egs.(19)—(21)] using the AIPI wave tute a compromise between a good fitting and a short expan-
functions of MgO. Our results have been plotted in Fig. 1.sion of the numerical AIPI embedding potentials. We have
We can observe that the qualitative aspects of the CAPS’s atgsed 5 Gaussians per symmetry to provide an accuracy better
very similar in both ions. Thé/(r) functions have very large than 6% at any point within the 0—3 bohr range. Figure 1
values near the nuclei, particularly fors—L. For instance, shows that the fitting is reasonable but not perfect.
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TABLE |. Mg?" and G~ CAPS obtained from the AIPI calcu-
lation at the experimental geometrg£4.213 A) of MgO.

Mg?* n; B @

s—d 2 202 752.811 410000 259.834 541 790
2 66 180.876 835 000 70.585 531 596
2 5807.877 089 100 29.505 737 538
2 51.817572 229 3.225 356 163
2 6.891 421 387 1.745584 878

p-d 2 1369.025 952 200 483.582 480 190
2 —1386.100 267 400 60.636 758 653
2 —29.960 840 154 7.327 324917
2 6.396 242521 1.665 288 736
3 62.197 933908 5.627 393 157

d 1 —2.221733012 287.638632 100
1 —2.205 452 222 26.153 807 145
1 —3.205 282 242 5.954 441 936
1 —1.754934 219 2.421788124
1 —0.241 448579 1.110 661 394

o n; B @

s-d 2 179 14.022 901 000 66.130 524 945
2 3656.939912 700 21.194 327 172
2 155.863 938 930 9.162583 119
2 —3.975007 998 3.589 159 280
2 1.018079 213 0.707 640724

p-d 2 157.952 553 650 189.985416 720
2 —154.908 003 120 21.450770682
2 —6.435733717 2.870414 868
2 —0.444 560 609 0.248 527 343
3 0.253338453 0.306 313051

d 1 —1.943867 876 143.104 813 360
1 —1.888123 352 12.807 469 812
1 —2.987 294 027 2.209 899 990
1 —2.523 696 496 0.763464 773
1 —0.350404 621 0.280899 723

Cluster model and self-embedding consistency

A first test on the previously derived CAPS’s can be donedone Hartree-Fock calculations using several different basis
by simulating the perfect MgO crystal using a cluster-in-the-sets and the most interesting results have been represented in
lattice calculation. The ability to pass this self-embeddingFig. 2.

consistency test depends (i) the cluster and lattice defini-
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FIG. 2. Total energy of the Mggﬁ‘ cluster versus the crystal-
lographic position of the six O ligands;. The calculations de-
picted on the plot are representative of the different types of behav-
iors found by using many different basis sets. Theyjlg4.1.1
model was found to be self-embedding consistent when basis sets
like 6-31++G or larger were used, the role of the diffuse functions
on the O centers being essential for the consistency.

maining cluster ions, whose positions are held fixed but their
wave functions are allowed to rel4%The existence of the Ib
region attenuates the effect of the cluster-lattice boundary on
the cluster wave functioff.~#2

All the defects examined in this work are centered either
on a Mg or an O position of the perfect lattice. It is then
natural to organize its neighbors into shells of symmetrically
equivalent ions around the substituted position. Accordingly,
we will use the notatiolAg—m.n.p to designate the defect
(following the common Krger-Vink notatiod®**% and the
cluster model, wheren is the number of shells in regions |
and 11, n the number of shells in region I, afnmthe number
of shells forming region la.

The simplest defect center model explored is
Mgyg—4.1.1, in which a Mgéf?‘ quantum cluster is embed-
ded by three shells of CAPS[$ Mg at (1,0,0), 12 Mg at

(3,3.0), and 8 O at £,3,3)], plus a set of 3366 point
charges that will be presented later in some detail. We have

We can observe that the quality of basis sets associated

tion; (2) the basis set; an(@®) the quantum technique used to With the cluster ions has significant effects on the nearest-
determine the cluster wave function and energy.
The defect model is composed of a number of ions orgabasis sets, such as STO-3G or 3-Z1@pduces an equilib-
nized into three different regions. Obtaining the local waverium position that is reasonably close to the id&ak 0.5
function and energy of the clusté&egion ) is the objective,
so all the ions in this region add electrons and basis functiongaises quite steeply for;>0.5. The use of large basis sets,
to the quantum-mechanical calculation. Region Il is made ofvhich may include polarization functions but lack diffuse
a collection of ions closely surrounding the cluster and repfunctions on the O centers, gives rise to absurd results, show-
resented by CAPS’s. Region llI, finally, comprises a numbeiling an optimalx;~0.42 and an unphysical lowering of the
of point charges that simulate the Madelung field acting orenergy forx;=0.55. Physically sound results are recovered
the cluster volume. Our previous experience has shown ugy including diffuse functions on the anions, and the use of

the convenience of dividing the cluster ions in subsets. Subany of

neighbor equilibrium geometry. The use of minimal or small

value, but the nuclear potential is very asymmetric as it

6-3%++G, 6-31%++G, 6-31++G(d,p) or

set la is made of all ions that are geometrically and electroni6-311++G(d,p) basis sets, for instance, produces almost
cally relaxed in the calculation. Subset Ib contains the reidentical results.
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FIG. 3. Total energy of the OMJ" cluster versus the crystal- FIG. 4. Total energy of the MggMg; " and OMgO3 ™ clusters

lographic position of the six Mg ligands;, for the Q,—4.1.1 versus the cwstallographic position of the first shell of ligands,
model. It is observed that the Mg ions collapse over the lattice withA 6-31G basis set has been used for’Mgnd 6-3 +G for O™2
independence of the quality of the basis set used in the calculatiofQns.

A similar test can be done for the O-centered clusters¢luster region can be reproduced by a finite set of point
Figure 3 depicts the nuclear potential for the Qffgcluster ~ charges occupying their nominal positions and having their
as obtained in the ©—4.1.1 model calculations. It can be nominal charges. The actual value of the potential, much
observed that the Mg shell collapses onto the lattice regiofore difficult to converge, can be corrected by adding a
no matter the quality of the basis set used in the calculatiorsmall number of ghost ions situated far away from the clus-
This result must be seen as a serious limitation of the clustéer, with appropriately adjusted charges. The importance of
model. We have previously discussed about the conveniendccurately reproducing the electrostatic potential in all direc-
of using cluster models in which the outmost shell, at leastlions, not just along some particular axes, should be stressed
of the quantum region is held fixed in position but otherwiseaS it can Significantly influence the cluster electron denSity at
allowed to relax e|ectronica||y to respond to the Changes |ﬁhe boundaries and the relative Stabl'lty of the different or-
geometry of the inner quantum regi#t*’The collapse ob- bital levels. _
the inconsistency of small clusters discussed in Ref. 40. Point charges converges both to the shape and to the value of

The simplest models in which we can relax the position ofth® Madelung field in the cluster regioa) all lattice ions
the first shell of neighbors and still maintain a buffering shellWith crystal coordinates-Xy<x,y,z<Xy and a nominal
within the cluster areMy,,—6.2.1 andXo—6.2.1. These chargeq™; plus (b) six ghost charges at the=(X,,0,0) and
contain 13 ions in the quantum regifthe central ion, six tequwalednt pOtSr:t'OHS bi/l\jlyrgnlqetry’ Wltth ?Clhi[?r?adfussed

. . . . o reproduce the exact Madelung potential at the cluster cen-
neighbors at £,0,0), and six nellglhbors at (11’01:91)32 'ONS " ter. We have used in this worKy = 3/2 andX,=25. This
represented by CAPSEL2 at (3,5.0), 8 at G,3.2), 6 at  corresponds to a set of 34% point charges and reproduces
(3,0,0), and 6 at (2,0,d)plus the set of point charges. the exact Madelung field to an error less thax 4’ har-

Figure 4 shows that all pathologies found previously ontree at random points inside a sphere centered at the (0,0,0)
the 4.1.1 models have now been corrected. Both thgosition with radius equal to the unit cell lenggh
Mgz+_centered and the ©O-centered clusters exhibit an A limitation of the current molecular codes when per-
equilibrium geometry for the first shell of neighbors that is forming cluster-in-the-lattice calculations, albeit small, de-
very close tax;=0.5, and a rather symmetric nuclear poten-Serves some comment. By default, the total energy computed
tial around the minimum. The 6.2.1 cluster model satisfiedor the cluster contains the self-energy of the embedding
the self-embedding consistency test, and will be used in th@oint charges. This has to be removed to get the effective
next section to simulate a large number of MgO defect cenenergy of the cluster, i.e., the expectation value of the effec-
ters. tive Hamiltonian[Eq. (1)]. Unphysical results would be ob-

Before leaving this section we want to give some considiained otherwise were cluster energies for different host ge-
eration to the representation of the Madelung field. It is wellometries compared.
known that the electrostatic potential acting on a cluster elec-
tron constitutes_a conditjonally c_onvergent ;eries that must IV. DEFECT CENTERS IN MgO
be added up using special technigusse, for instance, Ap-
pendix B in Ref. 45 These techniques are, however, not The final test on the usefulness of the embedding tech-
available in most quantum mechanical molecular codes. Fomique developed here is the examination of a large number of
tunately, Winteret al? have shown that, at least for some cationic and anionic defect centefdy, and Xq , respec-
crystal structures, the shape of the Madelung field in theively. We have used the 6.2.1 model described previously.
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TABLE II. Results of the HF calculations on théf,, —6.2.1 cluster model of several cationic defects in
MgO. The units used are hartrees for the cluster effective en@&@d)¢ eV for the relaxation and formation
energies; A for the the NN displacemehR; and cm ? for the a;q NN breathing mode frequency.

Center M basis x§Pt E°P ARpgiax  AE eiax Wa1g
Mg,\fIg 6-31G 0.507206 —1852.107475 +0.030 —0.060 607
Center M basis X3Pt EOPt AR AE o1y AE} AE! Waig
B;\/Ig 6-31G 0.455679 —1676.757596 —0.217 —-1.670 —40.221 7.460 559
AI;\,Ig 6-31G 0.472252 —1894.310298 —0.147 -—-0.901 -—28.199 1.528 638
Be,?j'g 6-31G 0.497565 —1667.066241 —0.041 -—-0.006 —4.374 0.348 551
Ca,\xﬂg TZV 0.525984 —2329.124307 +0.079 —1.085 8.227 3.325 700

qu,lg Lan2DZ 0.528261 —1688.649543 +0.089 —-1.271 6.982  2.087 702
SI’,\X,,g Lan2DZ 0.538698 —1682.376908 +0.133 —2.826 12.542  6.382 758
Baﬁg Lan2DZ 0.553072 —1676.957612 +0.193 —-6.734 19.767 12.087 855

Zn,\fIg 6-311G 0.510893 —3430.093134 +0.016 —0.156 —0.004 2.544 644
Liy, 6-31G 0.534923 —1659.848798 +0.117 —1.388 18.571  2.577 621
Nay, 6-31G 0.541548 —1814.223206 +0.145 —-2.191 19.915  3.550 656
Vg — 0.559967 —1652.044909 +0.222 —4.645 24.038 12.717 707

Vg Mg:6-31G  0.559497 —1652.061303 +0.220 —4.266 33.592 12.271 684

The equilibrium geometry of the first shell of neighbors has ARza(xg’pt—x‘fp‘[Mg,\jg]), (26)
been determined by performing single point calculations on a

grid of 16 different geometries with; going from 0.34 to  @nd similarly for an anionic defect. _
0.64. This totally symmetrical breathing;) movement of O.n the other hand, sevgral definitions have been used in
the nearest neighbor@IN's) has been the only geometry the'hterature f_or the formgtlon energy of the defect. The two
relaxation allowed in our calculations. The restrictedM&iN conventions use either ions or neutral atoms, respec-
Hartree-Fock(RHF) method has been used on the closed-tively, according to the formal chemical reactions:

shell clusters and the unrestricted Hartree-FqtkHF)
method on the open-shell ones. All calculations have been
done with thecaussiang4 and GAMESS' codes, using very and
strict convergence criteria. Particular care has been paid to
secure that all calculations on a center converged to the same (Il) Mg?*: MgO(S)+A(g)—>A2+: MgOs) +Mg(g)

electronic state. Correlation energy has been shown to plafy h ionic def d similarly for th -
“no crucial role” on the equilibrium properties of bulk and or the cationic defects, and similarly for the anionic ones.

surfaceF center*” and we expect the same behavior forVery large differences are found between the formation en-
the other defects examined here ergies in both conventions\E} and AE}, respectively. In
The main results are presentéd in Tables Il and IIl. Th addition, the Gaussian basis sets routinely used for the mo-

) Secular calculations are rather far away from the Hartree-
6-31G and 6-3% +G basis sets have been used for the MgFock limit for free atoms and anions, which adds signifi-

iy O atoms, res_pectwely. e bases usgd for the other aéé\ntly to the errors in the formation energies. Particularly
Oms_ .|n .the Impurity centiars are collected in the tables: Th%iifficult is obtaining a physically significant reference energy
equilibrium geometry X;) and energy E°") and the Vi-  for 02 and $ because of their instability as free, gas-
bration frequency ¢,, ) for the breathing movement of the phase entities. To avoid these problems when comparing our
NN's have been carefully determined by Marquardt-results to those by other researchers, we list both types of
Levenberg least squares fitting of a high-degree polynomidiormation energies in Tables Il and IlI.
to the cluster effective energy. Let us now examine the most significant aspects of our
Our results show an outwards NN relaxation of predictions. We can observe that the defects can be naturally
+0.030 A in Mgy, and an inwards relaxation of  grouped by their typ&cationic or anionig and charge. As a
—0.006 A in Q,, which correspond to relaxation energies general rule, cationic defects tend to produce large inwards
of —0.060 and—0.005 eV, respectively. This is a good de- displacements when charged positively, small relaxations if
gree of self-consistency, according to our experience. neutral, and outwards displacements when charged nega-
Our predictions of the NN relaxation at the defect centerdively. The opposite is true for the anionic defects. This trend
have been corrected for this small error in the calculation ofs in agreement with the sign of the Madelung field at the
the host. Accordingly, the NN displacement at a cationic deMg?* and G~ host positions, revealing that the phenom-
fect is determined as enon is largely influenced by the electrostatic interactions.

() Mg?*:MgO+AZ) —AZ*:MgO(,)+ Mg,
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TABLE IlI. Results of the HF calculations on thé}, —6.2.1 cluster model of several anionic defects in MgO. The units used are the
same as in Table II.

Center M basis x§P EoP AR eiax AE reiax Wa1g
ch) 6-31++G 0.498 532 —1728.871 865 —0.006 —0.005 678
Center A basis X3P EoPt AR AE o1y AE} AE{ ®aig

Ho (Ho) 6-31++G 0.550 052 —1653.644 129 +0.217 —1.492 35.801 25.784 458
Vo (F+2) — 0.547 710 —1653.181805 +0.207 —-6.126 34.809 24.791 784
vy (F*?) H:6-31++G 0.548 006 —1653.191811 +0.208 —5.667 34.537 24.519 763
Vo (F+2) 0:6-31++G 0.547 801 —1653.184417 +0.208 —5.718 34.738 24.720 766
Ho (H7) 6-31++G 0.523 563 —1654.239927 +0.105 —1.216 19.269 9.571 681
F* — 0.526 777 —1653.545595 +0.119 —1.656 24.909 14.892 701
F* H:6-31++G 0.520839 —1653.615439 +0.094 —1.196 16.693 12.991 768
F* 0:6-31++G 0.523 693 —1653.457947 +0.106 —-1.219 24.277 17.277 666
Fo 6-31++G 0.522 254 —1753.246 715 +0.100 —-1.112 17.188 5.814 686
Clg 6-31++G(d) 0.535466 —2113.253617 +0.156 —3.407 21.029 8.530 747
Brg 6-311++G(d) 0.539993 —4227.026553 +0.175 —4.600 23.642 11.145 766
Sé 6-31++G(d) 0.520716 —2051.445510 +0.093 —1.193 8.795 3.217 756
Seé 6-311++G(d) 0.527 520 —4053.622241 +0.122 —-2.162 13.133 6.954 761
F — 0.507 619 —1653.678726 +0.038 —0.068 21.287 11.269 489
F H:6-31++G 0.498 570 —1653.766 094 0.000 -—0.003 —5.343 8.892 597

F 0:6-31++G 0.500991 —1653.759796 +0.010 —0.002 5.418 9.063 585
NG 6-31++G(d) 0.481536 —1708.317033 —0.072 —0.730 —11.141 4.411 688

P 6-31++G(d) 0.512 497 —1994.419305 +0.059 —-0.413 4.356 9.877 729
Asg 6-311++G(d) 0.517564 —3887.780659 +0.080 —0.746 8.768 12.660 689

M;\,,g centers B®* and AP' are considerably smaller Mg?*. Accordingly, the NN shell relaxes inwards whéh
than Mg* and induce significant inwards NN relaxations: =Be and outwards for the other alkaline-earth metals and
—0.22 and—0.15 A, respectively. Both centers are un-Zn. The actual value of the relaxation is, however, signifi-
stable according to criterion Il, but the formation energies areantly smaller than the difference in the generally accepted
very large and negative according to criterion |. The valugonic radii®® 0.45 (Bé"), 0.720 (Mg "), 1.00 (C&"), 1.18
AE{(Al},)=—28.2 eV can be compared with the estima- (SP?*), 1.35 (Bd ), and 0.740 (ZA?). The net effect of the
tion of Colbourn and Mackro8t using the shell model and MgO lattice is then to damp the differences in size among
Gordon-Kim type potentials:-30.29 eV. the alkaline-earth-metal cations. The formation energy of all

Our cluster calculations do not take into account the longy ,\XAg centers is positive, according to criterion II, and in-
range polarization .energy.assom«_ated to the fprmatlon of Qreases as the difference in size betwddf™ and Mg
charged _defgct. Using a simple dleleptrlc continuum mOdeIincreases. If criterion | is used, instead, the formation ener-
thegpolarlzatlon energy around a cavity of radRiss given gies are lowered by 2—7 eV and, in fact, ngbecomes

24 stable. Our values okEj for Beyy, (—4.37 eV) and Cg,

2 (+8.23 eV) are in reasonable agreement with the shell-
Epol Zﬁ(l— 1/ey), (27 model calculations by Colbourn and Mackrd8t:-3.57 and
+5.82 eV, respectively.
where Q is the net charge of the defect aweg the static The breathing mode vibration frequency, on the other

dielectric constant of MgO. UsinB=a+/5/2 (the position of  hand, increases with the size of tM?" ion. This is not a

the first neighbor shell beyond the clustere estimateE mass effect, as the effective mass of tlegglmode, ng , is

to be~1 eV for theQ=+*1, and=~4 eV for theQ==*2 independent oM?", but a direct consequence of the increas-

defects. Going beyond this crude but widely used mtid&!  ing force constant ab12* becomes larger.

can be done by calculating neutral associations of defects It is worth mentioning that the calculations on the heavy

and obtaining a statistical average over the many differenions SF™ and B&" have been done using Hay and Wadt

charge compensation mechanismisut this is well beyond relativistic ECP’s to represent the core electrdfs:>® be-

the current possibilities of preseab initio calculations. cause Gaussian all-electron basis sets of quality are not avail-
M,\X,,gJ centers The replacement of Mg by another diva- able. Test calculations on the @acenter show that the

lent closed-shell ion produces a very simple result, easy tealence-electron calculations agree with the all-electron re-

interpret in terms of the relative ionic radii a1t and  sults within 0.01 A on the center geometry and within 2
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cm™ ! on the nuclear potential curvature. This agreement evithe third- and fourth-period ions is significantly smaller than
dences the usefulness of the valence-electron calculations dfat between the second- and third-period ions. In other
the heavy elements. words, the head of group elemeritd, O, B behave differ-
M,'wg centers The net charge of the defect; 1, domi- ently from the other elements in their group. This well-
nates the center geometry and botfyJiand Ng,, induce a known eff(.act. for pure crystal; and.gas phase molecules ap-
significant outwards relaxationt+ 0.12 and+0.15 A, re- Pearsaganin SUbS_t.'t“t'O”al impurities. .
spectively, very similar to the values reported by Grimes F centers [F=(vg+2e")*, F'=(ug+e')’, F?=vg]:
et al* The formation energy of both centers is very similar: Our calculations predict a negligible distortion of the lattice
3—4 eV using criterion 1l and 19—20 eV using criterion |. for the neutralF center, significant outwards NN relaxation

The last value can be compared to the shell-model classic&" F~ (+0.09 A), and even larger outwards displacement
estimation of 16.3 (Lj,) and 18.6 eV (N, ).*® for F*2 (+0.21 A). As in the case of the cationic vacancy,

Mg?* vacancy(v}\;'g) centet This highly charged defect W€ have explored the effect of including or not basis set

induces a very large outwards relaxation on the NN She"funct!ons at the oxygen vacancy, €., UsIng floatlngibass
; 1funcuons. The smallest cluster energy is obtained when a H

even further shells of neighbors, which has not been take asis set is used on th's position. The gffect IS small on the
. . . N geometry(0.04 A in the worst caseF center with no
into account in our calculations. In consequence, our calcu;:

. o basig but it can be of several eV’s on the formation energy
lated formation energy;=34 eV (criterion I) should be con- of theF andE* centers.

sidered as an upper limit value. As a comparison, the shell- F centers are the best investigated MgO defects, both
model classical calculations by Colbourn and Mackfodt from an experiment&5 and from a theoretical point of

produceAE'f= +25.41 eV after allowing for the relaxation gy (Refs. 46,47,49,50,53,54,59,6976ur results com-
of many shells around the defect center. Gibsbal, onthe  pare well with, for instance, the EMBED calculations by
other hand, predicAEy = +13.82 eV?® close to our value  Scorzaet al“® and the density-functional theofpFT) 32-
of +12.27 eV. molecule supercell calculations by Kantoroviehal.”* The

We have examined the effect of the basis set on the vaocal density approximatiofLDA) 8-molecule supercell cal-
cancy center by doing the calculation, both maintaining thecylations by Wang and Holzwarthdiffer, however, in pre-
Mg®* basis at the vacancy position and removing it. Bothdicting much smaller relaxations for the chargedenters.
calculations show a negligible difference in the center geomeyr AE! formation energies, on the other hand, do agree
etry, but the use of basis functions at the vacancy positioRith the classical Mott-Littleton simulatiofs”” as well as

reduces the total energy of the cluster by some 0.5 eV angith other quantum-mechanical calculatiéfig?
the 1a,4 breathing frequency by 23 cm.

Xs centers The positive charge of the defect produces a
significant outwards relaxation{0.10 A for R,), which is V. CONCLUSIONS
further enhanced if the ionic radius of the impurity anion is
larger than that of the oxide. The relaxations are, however, We have presented a method of deriving crystal adapted
quite different from the differences in ionic radfi:1.19  pseudopotentials for positive, neutral, or negative atomic
(F7), 1.26 (O'?), 1.67 (CI'), and 1.82 A (Br). We see, species. Our CAPS’s provide a practical solution to the em-
again, that the lattice damps the difference in size betweehedding problem for cluster-in-the-lattice calculations, as
the substitute and the host ions. On the other hand, our valugey are immediately supported in many available molecular
for AE}(Fp)=+17.19 eV agrees with the shell-model es- codes. o _
timation reported by Catlo®? +16.31 eV. The center sta- 10 test the accuracy and reliability of our technique, we
bility decreases in passing from F to Cl and Br, and thehave considered a well-known ionic compound, MgO._ Either
nuclear potential curvature, as measuredday, , increases @ MgQMgs or OMgsOs quantum cluster embedded in the
along the same series. CAPS plus a ca_lrefully cho§§n .set of pomt. charges has been
X% centers Our calculations predict outwards relaxations YS€d to determine the equilibrium properties of several cat-

for both S and S§ centers, but much smaller than the ionic ionic and anionic, neutral, and charged defect centers. Our
radii difference(1.40, 1.80 ,and 198 A for . S and results are overall consistent and do compare well with pre-
sé-, respectiveli?s).,Ol.Jr r,esults,4.r4.4% andeS.S"/(,), are Vious calculations using many different techniques. This

more in line with the previous ICECAP calculations by Pan-g%mlgarr'rs]g{]h;g()::% ncoltusr;gre ntqr:;%;?mr;&i}r V\t’ﬁaza\;e t;ﬁggeda
dey et al:®* ~6% and~8% outwards NN displacements >"9 :

for S5 and S§ , respectivel scheme for each type of defect center. We believe that the
S,O » €SP y- CAPS can be a valuable resource for other researchers and
X4 centers The N center shows the tendency of nega-

. o X ) we plan to derive and make publicly available the potentials
tive anionic defects to suffer small inwards NN relaxations.;5. some of the most common ions and host lattices.

In the case of the > and Ag, centers, the bigger size of the
third- and fourth-period anions works against this tendency
to produce a small outwards NN displacement.

The results on the N—As, O—Se, and F—Br groups of im-
purities show that for a given group the difference between V.L. thanks the staff of the Physics Department of the
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