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The electronic structure of the oxides and sulfides of Mg, Ca, and Sr is computed with use of the
self-consistent Hartree-Fock method including correlation. Energy-band structure and density of
states are presented and discussed in context with the available experimental and theoretical studies.
Our results predict that these materials (except MgS) are direct-band-gap materials.

I. INTRODUCTION

Alkaline-earth oxides are technologically important
materials with applications ranging from catalysis to mi-
croelectronics. Alkaline-earth sulfides have been pro-
posed as host materials for device applications such as
multicolor thin-film electroluminescent and magneto-
optical devices.!

Recently, Kaneko and his co-workers®> have measured
the optical spectrum of Ca, Sr, and Ba chalcogenides.
They have interperted their results on the basis of a self-
consistent augmented-plane-wave (APW) band-structure
calculation concluding that these materials, except BaO,
are indirect-band-gap materials with the lowest direct
band gap at the X point. However, a more detailed look
at the experimental results and their interpretation re-
veals some inconsistencies.

(i) The appearance of the two groups of peaks (as-
signed to the excitons at the X point and T" point, respec-
tively) in the [imaginary part of e(w)] &, spectrum
showed no systematic trend in the oxides. It was absent
in CaO and BaO, but was present in SrO.

(ii) It appears that the direct band gap in these materi-
als was estimated from the &, spectrum without taking
account of the excitonic binding energy. [see Tables I
and IT of Ref. 2(a)].

(iii) None of the peaks in the &, spectrum of CaO was
assigned to the I'|5-T"; transition, but the assignment for
the higher-order transition I';5-I';s and TI's-I';, was
given.

It is well known that band-structure calculations based
on the local-density approximation (LDA) underestimate
both the band gap and the valence-band width. Further-
more, the drastic lowering of the d-like conduction level
(relative to the experiment) at the X point (i.e., X3) has
been observed in the LDA results for ionic materials such
as NaCl.> Hence we believe that the reported interpreta-
tion of the optical spectrum has not properly taken ac-
count of the inherent limitations of the LD A-based calcu-
lations and is therefore somewhat ambiguous.

To provide a more accurate basis for the interpretation
of the optical spectrum of these materials, we have under-
taken a detailed and systematic investigation of the elec-
tronic structure of alkaline-earth chalcogenides using the
Hartree-Fock method. This method has been highly suc-
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cessful in describing the electronic structure of alkali and
silver halides.® The present work focuses on the nature of
the energy gap of the oxides and sulfides of Mg, Ca, and
Sr only. In the next section, we give a detailed account of
the Hartree-Fock method including electron-correlation
effects. In Sec. III the results are presented and com-
pared to earlier studies involving both theory and experi-
ment. Finally, conclusions are given in Sec. IV.

II. THEORETICAL METHOD

The basic method is Hartree-Fock and we begin with
the canonical Fock equation,

F¢;(k,x;)=¢;(k)¢;(k,x;) , 2.1

where the one-electron orbitals, ¢’s, are constrained to be
orthonormal and eigenstates of the z component of spin
and all pertinent crystal-symmetry operations. The Fock
operator F'is given by

“‘ﬁz e’ px',x")
F= +e? ——dx’
% ir~R,] Ir—r'|
—ezf P—’lP x)dx , (2.2)

We note here that the Fock operator is a unique func-
tional of the first-order density matrix p, which is given
by

=3 X7k, x)$;(k,x') , 2.3)
k i

where the sum is carried over all occupied orbitals.

For the N-electron-system ground state, the occupied
one-electron orbitals, ¢’s are the ones with the N lowest
values of the Fock eigenvalue ¢;(k). In the context of
Koopemans’s theorem, the eigenvalue of an occupied or-
bital €;(k) is the negative of the energy needed to remove
the electron (occupying the ith orbital) from the crystal,
and the eigenvalue ¢, (k) for a virtual (unoccupied) orbit-
als is the negative of the energy gained by adding an elec-
tron to the crystal. In both cases, the electronic density
of the remaining electrons is unrelaxed. Hence the phys-
ics here refers to ionization properties, not to excitation
properties of the N-electron system.

The self-consistent solution of the Fock equation (2.1)
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is a cumbersome process for a crystal, and the iterative
nature of the procedure demands that this equation be
solved several times, making it a time-consuming opera-
tion. One may therefore construct a three-dimensional
mesh in k space and then solve the Fock equation for a
few k points, obtaining the density matrix p for the crys-
tal. Alternatively one may use a method proposed by
Kunz® to obtain a self-consistent density matrix. Kunz’s
method is based on the local-orbital theory of Adams and
Gilbert,* solving the modified Fock equation

(F+pWp)d;(r—R ,)=¢,;4,(r—R ;) , (2.4)

and requiring that the occupied orbitals ¢’s (which are a
set of atomiclike orbitals centered on R ,) be obtainable
from linear transformations of occupied (canonical) Fock
orbitals ¢’s. The density matrix remains invariant and is
now given by

p=38(x—R IS} §1(x—Rp) (2.5)
4;,
;
and
SAij: f‘f’f(x_RA )¢ (x—Rpldx . (2.6)

Thus solving Eq. (2.4) provides the p needed to obtain the
Fock operator F for any choice of the operator W. Ideal-
ly, one picks a set of W’s to produce localized atomiclike,
orbital solutions. (This can be accomplished by requiring
W’s to be a potential well centered on a site representing
the crystalline environment most efficiently.)

If we wish to localize N 4 electrons on each site A4 in
the crystal, then we solve the Eq. (2.4) for each site in the
crystal using the first N 4 solutions from each equation to
build up a set of local orbitals, $,-(x—R 4), which exactly
span the occupied part of the Fock space. Crystal sym-
metry then allows that we must solve only m local orbital
equations for a crystal with m atoms in the unit cell.
That is, in terms of the local orbitals, the occupied Fock
space is exactly determined by a minimum basis set. Fi-
nally, we construct the Fock operator using the first-
order density matrix p and solve the equation (2.1), not
iteratively, but once.

A Fock occupied orbital ¢;(k,x) can be given as

ik'R

6,k x)=N"2 3 Sajke 2.7)

I=occ A4

¢ (x—R ),

where the coefficients a/(k) are determined by diagonaliz-
ing the m Xm matrix for the Fock operator in terms of
the basis of Bloch projected local orbital solutions.

We note here that the expression for the first-order
density matrix p involves elements of the inverse of the
overlap matrix expressed by means of the Lowdin a-
function expansion method

o _ ce

S =28 45 =Sapt 2.8)
which then allows everything to be expressed in terms of
the overlap matrix itself.> In this procedure, we keep
terms which involve only first order in interatomic over-
lap. This is consistent with the assumption of a small
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overlap between nearest neighbors for ionic crystals.
That is, the assumption is made that the interatomic
overlap between the local orbitals is small enough to al-
low accurate solutions to be obtained while retaining in
the density matrix only terms which are of zero or first
order in interatomic overlap.

Furthermore, we note here that the local-orbital solu-
tions for the cation in the crystal typically differ by one
part in 10* from free-ion solutions in terms of charge den-
sity. On the other hand, the anions in the crystal are
found to be more localized than the same ion in free
space. The anion crystal solutions differ by up to one
part in 10? in terms of charge density from the free-ion
solutions.

Since this procedure does not provide for the virtual
(conduction) bands, we use the mixed-basis method
(developed also by Kunz and his co-workers)® consisting
of a basis of all occupied orbitals [Eq. (2.7)] and a plane-
wave set given by

¥(k,q,0)=(NQ) 2exp[i (k+q)r], (2.9)

where Q is the unit-cell volume, k is a vector in the first
Brillouin zone, and q is a reciprocal-lattice vector. For
this study we use a set of 35 plane waves. We note here
that in going from 15 to 27 plane waves, the conduction
levels shift by about 0.3 eV over the first 20 eV, whereas
in going from 27 to 59 plane waves, the shifts are 0.1 eV
or less.

As is well known, Hartree-Fock energy bands for
nonmetallic solids have exaggerated energy gaps. This is
due to the fact that the single determintal formulation in
Hartree-Fock theory does not allow the electrons to in-
teract in more than an average sense, and thus their
motions are uncorrelated. Electrons of the same spin
have some of their pain interaction taken into account
due to the built-in antisymmetry of the wave function,
but there is no pair correlation at all between electrons of
opposite spin.

The correlation energy is conventionally defined as the
difference between the energy obtained from the
Hartree-Fock theory and the exact nonrelativistic energy
of the system. In principle, the exact energy can be
determined by using a wave function that is a linear com-
bination of determinants. This technique is referred to as
configuration interaction. However, we note here that
the treatment of correlation effects in an infinite solid is
not an easy and simple extension of the same in finite -
molecules. For solids, it is more practical to estimate the
correlation correction by other methods.

We note here that the Hartree-Fock excitation energies
are

en=Eqnr —Efg " (2.10a)
for occupied states and
p=EfV—EWN (2.10b)

for unoccupied states. In going beyond the Hartree-Fock
approximation, let us define the exact excitation energies
as
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g =EM—EN-D
(2.11)

— p(N+1)_ (N)
o =E EW

where EY) is the exact total energy of the N-electron sys-
tem.

Assuming that the correlation effect can be treated by
perturbation theory, we write

E‘N)=E(;ﬁ;) +EC(N) , (2.12)

where E{™ is the correlation energy of the N-electron

system. Equation (2.10) can now be written as
nk=Ep?k+(E¢(‘N)—Ec{N_”) ,
0 (N+1) (V) 2.13)
En'k':En'k'+(Ec —EC ).

For nonmetals in which the upper valence bandwidth is
less than the Hartree-Fock band gap, Pantelides et al.®
have shown that Eq. (2.13) can be approximated by

e =0 +EWN V),

gnk,=sg.k,+E,(11f\Q(e) .
(N)

(2.14)

Here, E,..(e) is the self-energy of an electron that occu-
pies the one-electron Hartree-Fock state n’'k’ in an N-
electron system. By analogy, E\Y ~U(h) is the total-
energy charge in the (N —1) electrons when the electron
occupying state nk is removed, and therefore it is re-
ferred to as the self-energy of a hole.

We use the electronic polaron model’ to calculate the
self-energies of the electron and hole. In the Hartree-
Fock theory, particles (i.e., conduction-band electrons
and valence-band holes) respond only to the average posi-
tion of the other electrons and nuclei. This is obviously
incorrect since it is expected that the independent charge,
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especially if it is moving slowly, will polarize its sur-
roundings to some extent. The electronic polaron model
dresses the conduction-band electrons and valence-band
holes with quanta of the polarization-field excitons treat-
ing the energy bands as quasiparticle bands with the
Hartree-Fock one-electron bands as a zeroth-order ap-
proximation to the quasiparticle bands.

In this model the excited states of a crystal are simulat-
ed by a dispersionless band of excitons so that EV)(e) and
E“~1(h) are the interaction energies of an electron and
a hole with these excitons. The self-energies are then cal-
culated by second-order perturbation theory.

The correction to the energy of an electron in a con-
duction band is given by

:27Tezﬁwex(l—1/8w) [{kle |k —q )|

Ae, (k)

Qq? = e(k)—tiw,, —e(k —q) ’
(2.15)
where for a hole in a valence band
2mefiw,, (1—1/¢,,)
AEk(k): 5
Qq
—igr _ 2
[(kle "k —q)| (2.16)

qu“ #ow,, +e(k)—elk —q) ~

Here %o, is the energy of the virtual polaron which we
assume is constant and equal to the uncorrelated HF
band gap, €, is the optical dielectric constant, and Q is
the unit-cell volume. The matrix element is taken be-
tween Bloch states of the band whose energy we are
correcting (the uncorrected band energy appears in the
denominators, and interband effects are ignored) and the
sum runs over the first Brillouin zone. We perform the
sum by sampling an irreducible wedge of the zone at 20
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FIG. 2. CaO: Hartree-Fock and correlated energy bands.

points, with appropriate weight factors. The resulting
corrections depend only slightly on the wave vector, so
that they give nearly a rigid shift of the bands (downward
for conduction bands and upward for valence bands).
The positions of different valence bands relative to each
other are also affected very little by this correction. By
far the most noticeable effect of long-range correlation is
the reduction of the band gap.

The electronic-polaron model neglects short-range
correlation effects which are found to be important for in-
sulators. Short-range correlation considers the relaxation
of the nearby orbitals when an electron is added or re-
moved. These corrections for the band in question are
calculated by taking the difference between the binding

energy of the electron (obtained by an embedded-
molecular-cluster ~calculation)® and the equivalent
Koopman’s theorem binding energy (which is the energy
of the level from which the electron is removed).

III. RESULTS AND DISCUSSION

A. Alkaline-earth oxides

The uncorrelated and correlated Hartree-Fock energy
bands for MgO, CaO and SrO are shown in Figs. 1-3.
The qualitative features in these band structures are
found to be very similar to those in alkali halides. For
example, anion p orbitals form the upper valence band.

Energy (Ry)

L

2

SrO

Hartree-Fock

Correlated

FIG. 3. SrO: Hartree-Fock and correlated energy bands.
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TABLE 1. Experimental energies for the major peaks in either optical absorption or the reflectivity
spectrum of alkaline-earth oxides and sulfides.

Peak energies (eV)

MgO Reflectivity,” 80 K 7.7,10.8,13.2,16.8
CaO Reﬁectivity,b 80 K 6.8,10,11.4,12.1,16.9
Reflectivity,” 2 K 6.815
SrO Absorption,? 300 K 5.77
Reflectivity,® 2 K 5.727,5.79,6.05
CaS Absorption,? 77 K 5.38
Reflectivity,” 2 K 5.273,5.78
SrS Absorption,? 77 K 4.8,4.9

Reflectivity,” 2 K 4.761,4.855,5.321,5.425

2Roessler and Walker, 1967 (Ref. 9).
"Whited and Walker, 1969 (Ref. 10).
°Kaneko and Koda, 1988 (Ref. 2).
dSaum and Hensley, 1959 (Ref. 11).

Both the valence-band maximum and the condition-band
minimum occur at the I' point, predicting the oxides to
be direct-band-gap materials.

Experimentally, the band gaps are usually estimated
from optical spectra (either absorption or reflection).
Table I displays such data on the oxides which have been
used to estimate their band gap. (The band gap is taken
to be the energy of the lowest-energy absorptivity or
reflectivity peak plus the exciton binding energy.)

MgO is the simplest rocksalt-structure alkaline-earth
cholcogenide, and a large number of both experimental
and theoretical studies is therefore available to which we
can compare our calculated results and subsequently
judge the predictive capacity of the Hartree-Fock method
used here. The present calculation predicts an uncorre-
lated band gap of 17.6 eV. When we include the correla-
tion corrections (i.e., the long-range correction of 5.21 eV
and the short-range correction of 4.9 eV), the band gap is
reduced to 8.21 eV. The corresponding experimental
value is 7.833 eV.!? The energy gaps at high-symmetry
points are given in Table II along with the results of the

earlier theoretical studies.!> 2!

The density of states for MgO is shown in Fig. 4. The
upper valence band exhibits a double-peak character with
a width of 7.64 eV. Recent photoemission data deter-
mines a width of 6.7 eV.!> The total valence-band width
(i.e., sp-band width) comes out to be 24.9 eV as compared
to the experimental value of about 21 eV.?? In Table III
the calculated (electron) binding energies for core levels
along with the corresponding x-ray photoelectron ener-
gies are given showing good agreement.

Several other theoretical studies on the band structure
of MgO have been reported ranging from empirical pseu-
dopotential to pseudofunction local-density approxima-
tion (LDA) (see Table II). Our calculation agrees with
these studies in describing the qualitative features of the
valence and conduction bands. Most of the calculations,
including the present ones, agree in predicting that
E(T')<E(L)<E(X), where E is the energy gap. But
these calculations differ considerably with each other in
assigning the peaks in the €, spectrum to different transi-
tions. For example, Table IV lists the assignments of the

TABLE II. Energy gaps (in eV) at high-symmetry points for MgO.

Direct gap

Method r X L
Experiment 7.833
This work 8.21 15.79 11.48
APW-LDA* 4.98 9.62 9.31
Mixed basis (pseudopotential-LDA)® 4.36 11.0 8.0
Pseudofunction LDA® 4.63 11.0 9.8
Pseudopotential-LDA¢ 4.5 10.5 8.0
Tight-binding® 7.76 16.2 9.38
Hartree-Fock-LCAOf 8.9 16.9 11.7
Hartree-Fock-Slater® 7.53 19.05 11.50
KKR" 5.37
Empirical pseudopotential' 7.78 12.35 10.89

2Stepanyuk et al., 1989 (Ref. 13).

"Wang and Holzwarth, 1990 (Ref. 14).
‘Bortz et al., 1990 (Ref. 15).

dChang and Cohen, 1984 (Ref. 16).
‘Daud, Jouanin, and Gout, 1977 (Ref. 17).

fPantelides, Michish, and Kunz, 1977 (Ref. 18).
8Walch and Ellis, 1973 (Ref. 19).

"Yamashita and Asano, 1970 (Ref. 20).

Fong, Saslov, and Cohen, 1968 (Ref. 21).
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FIG. 4. MgO: density of states.

prominent peaks given by the three different approaches.
Hence, it appears that a more detailed experimental
study, such as angle-resolved photoemission spectroscopy
(ARPES) method (which will not help if the disagreement
comes from the conduction band), is required before any-
thing can be said conclusively about the excitonic and/or
interband transitions in MgO.

In CaO the uncorrelated band gap is predicted to be
15.9 eV. The inclusion of correlation correction (i.e., the
long-range correction of 3.25 eV and the short-range
correction of 4.9 eV) reduces the gap to 7.73 eV. The
corresponding experimental value is 7.09 eV.!? In Table
V we list the energy gaps at high-symmetry points along
with the results of other calculations based on
augmented-plane-wave—linear combination of atomic or-
bitals (APW-LCAO),?® tight-binding,?® and combined
tight-binding and pseudopotential!” methods.

The results for our calculation are in agreement with
the earlier calculations for the valence-band
configuration, predicting the valence-band maximum at
I'. However, the agreement disappears when we consider
the conduction-band configuration. Our calculation,
along with the tight-binding pseudopotential calculation,
finds the conduction-band minimum at I', predicting that
CaO is a direct-band-gap material. On the other hand,
the APW-LCAO and tight-binding calculations deter-

TABLE III. Core binding energies of MgO, in eV.

Core level® This work Expt.
Oxygen 28 (L)) 23.8 22-23°
1S (K) 534.4 528.5°
Magnesium 2p (Ly3) 47.6 46.2°
28 (L)) 87.8 85.0°
1S (K) 1301.5 1299.8°¢

aSpectroscopic notations are shown in the bracket.
YHanson, Arakawa, and Williams, 1972 (Ref. 23).
°Fomichey, Zimkina, and Zhukova, 1969 (Ref. 24).
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FIG. 5. SrO: density of states.

mine the conduction-band minimum to be at the X point,
predicting that CaO is an indirect-band-gap material.
However, no experimental study has so far shown that
CaO has a minimum indirect band gap. Thus our results
are consistent with the available experimental data in
predicting the nature of the band gap for CaO.

No photoemission study in CaO is available with
which we can compare the calculated valence-band
width. We find the upper-valence-band width of 3.43 eV.
The tight-binding and APW-LCAO calculations deter-
mine the width of 0.66 and 1.5 eV, respectively, whereas
the tight-binding pseudopotential calculation finds a
width of 8.36 eV.

In SrO, our calculations predict the uncorrelated band
gap to be 14.85 eV, the long-range correction to be 2.85
eV, and the short-range correction to be 4.9 eV. The
correlated band gap is then found to be 7.1 eV as com-
pared to the experimental value of about 6.0 eV. (Table
D.

We find both the valence-band maximum and the
conduction-band minimum at the I' point, predicting
that SrO is a direct-band-gap material. Table V lists the
energy gaps at high-symmetry points in SrO. The only
other calculation based on the APW-LDA method?®’
determines the conduction-band minimum at the X point,
predicting that SrO is an indirect-band-gap material with
the minimum direct band gap at the X point. As with the
case of CaO, the available experimental studies have
shown that SrO is a direct-band-gap material.

The density of states for SrO is given in Fig. 5. The
width of the upper valence band is found to be 2.31 eV.
We note here that the outermost p band of the Sr ion is
placed in between the p and s bands of the oxygen ion.

The g, spectrum of SrO shows two doublet structures
with a separation of 0.23 eV. These structures have been
assigned to the X and I' excitations, respectively.2 As-
suming this assignment, one would then expect a different
scenario for the band structure of SrO as compared to ei-
ther MgO or CaO, such as a negligible dispersion of the
top of the valence band and nearly the same positions for
the T';5 and X} points in the conduction band. This is not
what has been calculated with either Hartree-Fock or
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TABLE IV. Prominent peak positions and their assignment in MgO. EPM is the empirical pseudo-

potential method.

Peak position EPM
(eV) This work Pseudopotential- LDA'S (Ref. 21)
7.7 T's-Ty I'is-Iy T,
10.8 Li-L} XX, L,-L)
13.3 X5-X, X4-X, 5.3
16.8 Xi-X, X}-X, X,-X,

APW-LDA methods. We find a separation of 2.0 eV be-
tween the I' and X energy gaps, whereas the APW-LDA
calculation determines the separation to be 1.07 eV.
Furthermore, the €, spectrum of CaO and BaO shows
only one doublet structure casting doubt on the assign-
ment of the second doublet structure of SrO.

B. Alkaline-earth sulfides

The uncorrelated and correlated Hartree-Fock energy
bands for alkaline-earth sulfides, namely MgS, CaS, and
SrS are shown in Figs. 6—8. As is the case with oxides,
the upper valence band is formed by the 3p orbitals of
sulfur with a maximum at I". On the other hand, the
minimum in the lower conduction band occurs at X for
MgS and at T for CaS and SrS. Thus MgS is predicted to
be an indirect-band-gap material while both CaS and SrS
are predicted to be direct-band-gap materials.

Our calculation finds the uncorrelated direct band gap
of 13.0, 12.2, and 11.6 eV for MgS, CaS8, and SrS, respec-
tively. The correlation corrections (on the order of 4.5
eV) reduce the gap to 8.4, 7.6, and 6.8 eV, for MgS, CaS,

-

and SrS, respectively. The corresponding estimated ex-
perimental values are about 5.6 and 5.0 eV for CaS and
SrS, respectively (Table I). No experimental study is
available for MgS. The energy gaps at high-symmetry
points are given in Table VI along with the results of a
linear  augmented-plane-wave  local-density-approxi-
mation (LAPW-LDA) calculation.”® We note here that
both calculations determine the top of valence band to be
at T" but differ considerably in predicting the conduction
band.

The density of states for MgS and SrS is shown in Figs.
9 and 10, respectively. The upper-valence-band width
comes out to be 8.56, 5.78, and 3.83 eV for MgS, CaS,
and SrS, respectively. In CaS and SrS, the outermost p
state of the cation does not lie inbetween the 3s and 3p
states of the sulfur. This ordering of valence states is
contrary to what we have observed for CaO and SrO.

In the €, spectrum of CaS, two groups of peaks were
observed with a separation of about 0.4 eV and were as-
signed to the excitons at X and T, respectively.> Our cal-
culations, however, do not support this assignment and
predict that the lowest exciton in these materials occur at

N>
- N
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| - w
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MgS
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FIG. 6. MgS: Hartree-Fock and correlated energy bands.
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TABLE V. Energy gaps (in eV) at high-symmetry points in CaO and SrO.
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Direct band gap

Indirect band gap

Method r X L r-x
CaO
This work 7.74 11.99 14.13 10.81
APW-LCAO? 9.71 9.74 9.62
Tight-binding® 5.93 5.4 5.14
Tight-binding-pseudopotential® 7.1 11.75 9.8 14.96
SrO
This work 7.11 9.11 12.36 8.54
APW-LDAY 5.10 4.03 7.3 3.90
2Mattheiss, 1972 (Ref. 25).
Seth and Chaney, 1975 (Ref. 26).
°Daud, Jouanin, and Gout, 1977 (Ref. 17).
9Hasegawa and Yanase, 1980 (Ref. 27).
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FIG. 7. CaS: Hartree-Fock and correlated energy bands.
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FIG. 8. SrS: Hartree-Fock and correlated energy bands.



9236 RAVINDRA PANDEY, J. E. JAFFE, AND A. BARRY KUNZ 43

TABLE VI. Energy gaps (in eV) at high-symmetry points for sulfides.

Energy gap
Direct band gap Indirect band gap
r X L (T"-X) (I'-L)
MgS This work 8.38 10.14 9.10 6.48 7.50
CaS This work 7.60 12.64 10.97 10.39 9.43
LAPW-LDA? 3.94 2.95 ~5.5 2.14 3.16
SrS This work 6.83 8.88 10.03 7.50 8.52
LAPW-LDA*® 3.51 2.78 ~5.0 2.30 2.58

#Self-consistent linear augmented-plane-wave method with Kohn-Sham exchange potential (Ref. 28).

the I" point. We note here that the LAPW-LDA calcula-
tion® assigns the first two peaks in the €, spectrum to the
transitions in the vicinity of I' and L points with a sepa-
ration of about 2.5 eV.

Sulfides are known to be highly reactive with oxygen.
Furthermore, it has been shown that isoelectronic impur-
ities can form an excitonic state near the band edge of the
oxide.”” We therefore suspect that the second peak in the
€, spectrum may be due to impurity excitonic states such
as oxygen in sulfides.

IV. CONCLUSIONS

Alkaline-earth oxides and sulfides have the face-
centered-cubic (rocksalt) structure. These materials are
characterized by a high degree of ionicity (0.8-0.9) and
can be considered as divalent cousins of alkali halides.
The band structures of these materials can then be ex-
pected to exhibit the qualitative features shown by alkali
halides. This is what we have found predicting that the
lowest exciton occurs at the I' point in these materials.
Our results are therefore in disagreement with the results
of the APW-LDA calculations which determine the
lowest exciton at the X point in these materials.

Oxides are more ionic than sulfides and with this in-
creased ionic character, oxides are expected to have a

larger gap than the corresponding sulfides as predicted in
the present work. The calculated energies at the X point
show the influence of the d-like branch, X in the conduc-
tion band. For MgO, the X, and X} branches are nearly
degenerate while in CaO and SrO the X branch is lower
in the energy than the X branch.

The degree of localization of the wave function at the
ionic sites can also be seen from the calculated valence
widths. The width decreases as we increase the nuclear
charge of the cation, indicating that the wave function is
more localized for SrX than for MgX (where X is O or S),
consistent with the fact that SrX is more ionic than MgX.

In oxides, both the present work and the available ex-
perimental studies are in agreement in predicting the na-
ture of the band gap. However, disagreement appears for
sulfides. We believe that the only experimental study
does not show with certainty that the band gap is in-
direct. For example, in SrS the fundamental absorption
edge is reported to be about 5 eV. It was then argued
that since the lower energy side of the absorption edge
obeys the photon-energy dependence of the form of
(E —E,)% SrS is an indirect-band-gap material. Howev-
er, as we have argued above, this absorption edge may
well be in an impurity effect.

As for the overall magnitudes of the band gaps in these
materials, we obtain the best agreement with experiment
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FIG. 9. MgS: density of states.

FIG. 10. SrS: density of states.
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for the oxides, which is consistent with the fact that they
are more ionic than the sulfides and hence can be more
accurately treated by the local-orbitals form of Hartree-
Fock theory than the more covalent sulfides. We also
note that the local-density formalism is most accurate
when treating a nearly uniform electron gas and hence
may not be the best method for treating highly ionic ma-
terials where the charge density varies enormously from
point to point.
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Finally, we note here that extensive experimental infor-
mation is lacking despite the fact that these materials are
technologically important. We hope that this work will
generate more interest among experimentalists.
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