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Abstract
Few-layer black phosphorene has recently attracted significant interest in the scientific
community. In this paper, we consider several polymorphs of phosphorene nanoribbons (PNRs)
and employ deformation potential theory within the effective mass approximation, together with
density functional theory, to investigate their structural, mechanical and electronic properties.
The results show that the stability of a PNR strongly depends on the direction along which it can
be cut from its 2D counterpart. PNRs also exhibit a wide range of line stiffnesses ranging from
6×1010 eVm−1 to 18×1011 eV m−1, which has little dependence on the edge passivation.
Likewise, the calculated electronic properties of PNRs show them to be either a narrow-gap
semiconductor (Eg<1 eV) or a wide-gap semiconductor (Eg>1 eV). The carrier mobility of
PNRs is found to be comparable to that of black phosphorene. Some of the PNRs show an n-type
(p-type) semiconducting character owing to their higher electron (hole) mobility. Passivation of
the edges leads to n-type↔p-type transition in many of the PNRs considered. The predicted
novel characteristics of PNRs, with a wide range of mechanical and electronic properties, make
them potentially suitable for use in nanoscale devices.

Supplementary material for this article is available online
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1. Introduction

Since its successful exfoliation in 2014, few-layer black
phosphorene has attracted significant interest in the scientific
community [1]. Monolayer black phosphorene (α-P), with its
unique anisotropic puckered structure, is a direct band gap
semiconductor with a bandgap of ∼1.0 eV [2]. It is found to

withstand mechanical strains as high as 40% with a large
lateral flexibility [3]. Another equally stable 2D allotrope of
phosphorus is blue phosphorene (β-P) which has recently
been realized experimentally [4, 5]. Blue phosphorene pos-
sesses a graphene-like structure with the out-of-plane buck-
ling of 2.2 Å and an indirect band gap of ∼2.0 eV [6]. Both
black and blue phosphorene have intrinsic carrier mobility of
as high as 103 cm2 V−1 s−1 [7, 8]. The high carrier mobility
and semiconducting characteristics of α- and β-P makes them

Nanotechnology

Nanotechnology 29 (2018) 155701 (10pp) https://doi.org/10.1088/1361-6528/aaac43

5 Authors to whom any correspondence should be addressed.

0957-4484/18/155701+10$33.00 © 2018 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0003-2110-7432
https://orcid.org/0000-0003-2110-7432
https://orcid.org/0000-0003-3636-0502
https://orcid.org/0000-0003-3636-0502
https://orcid.org/0000-0001-9543-6349
https://orcid.org/0000-0001-9543-6349
https://orcid.org/0000-0002-2126-1985
https://orcid.org/0000-0002-2126-1985
mailto:ashokphy@cup.edu.in
mailto:tkumar@gjust.org
https://doi.org/10.1088/1361-6528/aaac43
https://doi.org/10.1088/1361-6528/aaac43
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/aaac43&domain=pdf&date_stamp=2018-02-20
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/aaac43&domain=pdf&date_stamp=2018-02-20


promising materials for application in optical and electronic
devices [9].

Bulk phosphorus can form various allotropes such as
violet, red, white and black due to the inequivalent sp3

hybridization of orbitals in the lattice [3]. Likewise, a number
of structurally different 2D polymorphs of phosphorous,
namely α-P, β-P, γ-P, δ-P, ε-P, τ-P, η-P, θ-P, f-P, tricycle-
type red phosphorene (R-P), square-octagon phosphorene (O-
P) and hexagonal-star phosphorene (H-P), have been inves-
tigated using the first principles method [10–17]. α-P, β-P, γ-
P, δ-P and R-P exhibit a buckled honeycomb structure con-
sisting of a six-membered ring similar to graphene, while ε-P,
τ-P, η-P, θ-P, f-P, O-P, and H-P crystallize into non-honey-
comb structural arrangements. Red phosphorene is con-
structed by the in-plane connections of the segments of α-P
and β-P [14]. ε-P and τ-P consist of squared units of phos-
phorus atoms while η-P and θ-P have phosphorus atoms in the
pentagon structural arrangement [12]. f-P consists of 4, 6 and
10 membered rings [13], and the O-P allotrope contains a
unique atomic octagonal tiling (OT) pattern consisting of four
and eight membered rings [15]. The phosphorus atoms in H-P
form a hexagonal lattice with a Magen–David-like top view
[16]. The honeycomb structures of phosphorene exhibit two
type of edges i.e., armchair and zigzag, whereas most of the
non-honeycomb structures are found to possess more than
two distinctly different edges. All these 2D polymorphs are
found to be semiconducting in nature with a band gap ranging
from 0.4 eV to 2.1 eV [10–17]. Note that α-P and β-P are
experimentally realized, whereas the other allotropes are yet
to be synthesized.

Similar to 1D graphene nanoribbons (GNRs), the phos-
phorene 1D nanoribbons can be constructed from their 2D
counterpart by cutting along various edge directions. Several
1D structures of black and blue phosphorene have been
investigated previously [9]. The α- and β-phosphorene
nanoribbons possess two types of edge i.e. armchair (AC) and
zigzag (ZZ), which strongly influence their band gaps
[18, 19]. External electric field has been shown to modify the
electronic band gap of both AC and ZZ α-phosphorene
nanoribbons (PNRs) due to the giant stark-effect [20, 21].
Also, the electron/hole effective masses and carrier mobility
of both α- and β-PNRs are found to depend on the edge
configurations [22]. On the other hand, in the non-honeycomb
PNR structures, various types of edge exist and it will be
interesting to investigate their properties.

In the present work we consider five honeycomb and
eight non-honeycomb phosphorene polymorphs, and report
the results of density functional theory calculations to deter-
mine energetics, mechanical stability and carrier mobility. In
the following, section 2 briefly describes the computational
model. Results are discussed in section 3, and a summary is
given in section 4.

2. Computational method

Density functional theory calculations were performed using
the SIESTA program package [23]. The norm-conserving

Troullier–Martin pseudopotential was used to treat the elec-
tron–ion interactions [24], whereas the exchange and corre-
lation energies were described using the GGA functional form
[25]. A double zeta basis set with polarization functions
(DZP) was used to expand the Kohn–Sham orbitals with the
mesh cutoff energy of 450 Ry. The minimization of energy
was carried out using the conjugate-gradient (CG) technique
with the forces less than 0.01 eV Å-1 on each atom. The
Monkhorst–Pack scheme was used to sample the Brillouin
zone with a (30×30×1) mesh for 2D sheets. Meshes of
(30×1×1) and (1×30×1) were used for PNRs with
lengths along the x and y directions, respectively. A vacuum
region greater than 20 Å along the two directions has been
used in calculations to avoid the superficial interactions due to
replicas.
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The carrier transport in PNRs was calculated using
deformation potential (DP) theory [26] and effective mass
approximation. The lowest energy PNR structures were
considered for calculations. For 1D systems, an analytical
expression [27] for the mobility (μ) was employed as follows.

T=300 K and m* is the effective mass of the charge
carriers, defined as m*=ÿ2(∂2E(k)/∂k2)−1. C is the stretch-
ing modulus caused by the uniaxial-strain (ɛ), which has been
calculated using the expression =C ,D L

d E

de1
1 S

0

2

2 in which ES is

the strain energy of a unit cell and L0 is the equilibrium lattice
constant. E1 in equation (1) is the deformation-potential (DP)
constant, which denotes the shift of the band-edge energy

induced by strain, and has been obtained as =E
dE

de
,

edge
1

where Eedge is the energy of the conduction band minimum
(for electrons) or the valence band maximum (for holes). Note
that equation (1) has been successfully applied previously to
study the intrinsic mobility of GNRs [28], graphyne nanor-
ibbons [29] and PNRs [9].

3. Results and discussions

Depending upon the ways that tetrahedrally coordinated
P-atoms in a 2D lattice are connected, different structural
allotropes can be formed. We have considered a number of
allotropes of phosphorene, including β-P, γ-P, δ-P, ε-P, τ-P,
η-P, θ-P, f-P, κ4-P, R-P, O-P and H-P. All these allotropes
are found to be semiconducting with a calculated band gap
varying from 0.48 eV to 2.09 eV (table S1 of ESI is available
online at stacks.iop.org/NANO/29/155701/mmedia).

The magnitude of the relative formation energies
(ERFmono) of all these 2D allotropes are found to be in
the order of 10–102 meV/atom, indicating their ease of
formation. This suggests that not only the α- and β-P, but
the other allotropes, can also be experimentally realized.
Hence, it is worth exploring the properties of other
allotropes. Note that ERFmono can be obtained as:

= - aE ,RFmono
E NE

N
A where EA is the total energy of the
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considered phosphorene allotrope, Eα is the energy per
atom of the most stable phosphorene allotrope i.e. α-P, and
N is the number of atoms per unit cell of the allotrope.
Similarly, the cohesive energies are in the range of −5.50 to
−5.66 eV/atom and are comparable with that of α-P
(−5.68 eV/atom) (table S1 of ESI).

Figure 1 shows the different types of possible edges of
the allotropes of phosphorene considered. Each allotrope cut
along the distinct edges gives rise to a distinct phosphorene
nanoribbon. The honeycomb structures (α-P, β-P, γ-P, δ-P
and R-P) possess two edge structures, one along the x-
direction and the other along the y-direction. Unlike these

Figure 1. Phosphorene allotropes indicating different types of edge (with different colors) in different directions (x and y). Since η-P and θ-P
possess a large number of edge structures, a few representative cases are presented here while others are given in figure S1 of ESI.

3
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honeycomb structures which possess only one type of edge
along each direction, the non-honeycomb structures possess
more than one different type of edge along different direc-
tions. Due to the perfect square symmetry in the unit cell of ε-
P and O-P, they possess two different edge structures (εx1, εx2
and Ox1, Ox2) along one direction which are also similar in
other direction (figure 1). The H-P allotrope also exhibits two
types of edge structure (Hx1 and Hx2) along one direction
which are also similar in the other direction due to the hex-
agonal symmetry in its structure. τ-P forms four PNR struc-
tures corresponding to the two different types of edge along
each direction shown in figure 1. η-P possesses 11 PNR
structures, five along the x-axis (ηx1, ηx2, ηx3, ηx4 and ηx5) and
six along the y-axis (ηy1, ηy2, ηy3, ηy4, ηy5 and ηy6) (figures 1
& S1 of ESI). θ-P possesses seven PNRs structures, four
along the x-axis (θx1, θx2, θx3 and θx4) and three along the y-
axis (θy1, θy2 and θy3). f-P forms six PNR structures, three
along the x-axis (fx1, fx2, and fx3) and three along the y-axis
(fy1, fy2 and fy3). κ4-P possesses two different structures,
one along each direction (κ4x1 and κ4y1). The width of the
considered PNRs lies in the range 17 Å to 46 Å (table 1).

Therefore, depending on the edge configuration in the x-
and y-directions, a total of 46 structures (figures 1, S1 and S2
of ESI) were considered. Note that in the equilibrium con-
figurations, the edge atoms in the bare PNRs show recon-
struction due to the presence of the dangling bonds (figure S2
of ESI). The dangling bonds on the edges of a given PNR are
then terminated by hydrogen atoms (figure S3).

3.1. Structural stability

In order to study the energetic stability of the considered
PNRs, we have calculated their formation energy (EFPNR)

which is defined as the energy required to form these
nanoribbons from their 2D counterpart. The formula is given
as: = -E ,FPNR

E NE

N
R D2 where ER is the total energy of the

ribbons, E2D is the energy per atom of the 2D sheet and N is
the number of atoms per unit cell of the ribbons. The EFPNR

for ribbons (except β-PNRs) are found to be lower than that
of the black phosphorene nanoribbons (α-PNRs), thereby
indicating these PNRs to be energetically more favorable than
the PNRs of the most stable black phosphorus.

The energetic stability of PNRs are found to be strongly
dependent on the direction along which they can be cut from
their 2D counterpart. It is found that four of the 2D monolayer
structures (i.e. β-P, η-P, θ-P and R-P) have a formation energy
comparable (the energy difference being less than 40 meV/
atom) with the most stable monolayer structure (α-P)
(figures 2(a) and (b)), indicating that these monolayers are
equally stable. Other 2D structures are energetically not
favorable, however, their 1D counterparts show energetically
favorable structures which is evident from their low value
formation energies. Note that β-P, η-P, θ-P, R-P and H-P
possess the least tension in their structures due to the presence
of either five or six membered rings, whereas the increased
tension in ε-P, τ-P, f-P, κ4-P and O-P due to the presence of
four membered rings in their structures, makes them less
favorable. However, the energy difference of the order of a
few meV indicates their ease of formation.

In order to obtain a greater insight into the energetics of
the given PNRs structures, the binding energy was calculated
using the formula: = -E ,B

E NE

N
R S where ER is the total energy

of the ribbon, ES is the energy of the isolated single phos-
phorene atom and N is the number of atoms in the ribbon. The
binding energies of the PNRs lay within the range −5.65 to
15.45 eV/atom (figures 2(c) and (d)) which are comparable to

Table 1. Calculated deformation potential (E1), energy bandgap of bare and passivated PNRs. (a) is length and (w) is width along the periodic
direction of the bare PNRs.

Bare PNR Passivated PNR

System
Length
(a) (Å)

Width
(w) (Å)

E1 (elec-
trons) (eV)

E1

(holes) (eV) Eg (eV)
E1 (elec-
trons) (eV)

E1

(holes) (eV) Eg (eV)

αx1 4.46 18.99 1.35 −1.20 0.37 1.61 −1.5 0.99
βx1 5.81 17.39 4.51 −4.10 1.08 −7.05 0.14 2.20
γx1 5.40 18.37 3.25 −3.25 0.36 1.86 −1.75 0.71
δx1 5.39 29.96 3.54 −3.17 0.35 4.34 −4.33 0.41
εx1 5.40 29.09 −0.70 0.14 0.64 0.76 −0.83 0.57
τx1 5.33 38.10 −4.97 4.47 0.73 −6.74 2.14 1.27
τy2 6.53 29.64 −1.08 2.27 1.14 −2.21 0.91 1.27
ηx3 6.39 25.39 0.80 −0.66 0.74 2.03 −2.04 0.99
ηy2 5.43 33.73 −1.66 1.52 0.85 −3.92 2.41 0.99
θx1 6.36 31.12 0.46 −0.68 0.16 1.75 −1.74 0.75
θy3 5.54 30.36 0.05 −0.70 1.08 −0.58 1.58 1.25
fx1 6.20 46.35 −4.03 3.05 0.32 −0.81 0.91 1.03
fy3 7.81 37.53 0.49 −0.56 0.90 −0.91 1.22 1.04
κ4x1 5.52 30.40 4.64 −2.06 0.30 1.81 −1.92 0.39
Ry1 8.92 18.96 2.45 −2.40 0.51 −3.12 −9.21 1.26
Ox2 6.53 34.71 −4.71 −4.96 1.81 −2.43 −0.62 2.10
Hx1 6.27 37.09 2.28 3.81 1.40 1.83 3.44 1.48
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the binding energy (−5.68 eV/atom) of the most stable black
phosphorene monolayer.

3.2. Mechanical properties

The representative structures in each edge direction, based on
the minimum total energy criterion, were considered in order
to determine their mechanical property, which led to a total
of 34 semiconducting (17 bare and 17 passivated) PNRs.
The stiffness of a material is an important parameter in
describing its mechanical stability. The stiffer an object is,
the less flexible it is. In 1D ribbons one can calculate line

stiffness using the formula: =C ,D L

d E

de1
1 S

0

2

2 where ES is the

difference between the total energy of the equilibrium and the
strained PNRs, e is the applied strain and L0 is the length

of the ribbon. For each ribbon, a strain varying from −1% to
+1% in steps of 0.5% is applied along the length of the
ribbon. The line stiffness is then calculated by fitting the
strained energy (ES) versus strain (e) curve with the formula

= + +E a e a e aS 0
2

1 2 (figures 3(a), (b) and S4).
It is found that the line stiffness of PNRs varies from

6×1010 eVm−1 (for Ry1-PNR) to 18.6×1011 eV m−1 (for
fx1-PNR) (figure 3) indicating that an R-PNR cut along the y-
direction is most flexible while a f-P cut along the x-direction
is the least flexible. Note that the calculated value of α-PNR is
16.6×1010 eV m−1. Line stiffness depends upon the inverse
of the length of the nanoribbon, which is not affected by
passivation. Also, the strain is applied in the small region i.e.
±1% where Hook’s law is applicable. The rate of change of
energy with strain for the passivated and unpassivated PNRs

Figure 2. Formation energy per atom and binding energy per atom of the PNRs considered. The bars in (a) and (b) shows the data for the 2D
sheet.
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remains nearly identical, which leads to nearly the same line
stiffness for both types of nanoribbon (figure 3), and their
mechanical flexibility does not change much with the passi-
vation of edges.

3.3. Electronic and carrier transport properties

Next, we calculate the electronic structure of the PNRs con-
sidered. The semiconducting behavior of the given PNRs
varies from narrow-gap semiconductor (Eg<1 eV) to wide-
gap semiconductor (Eg>1 eV). The passivation of edges
with hydrogen increases the band gap of PNRs, which lies in
the range 0.3–2.2 eV (table 1 and figure 4). The increase in
bandgap on the edge passivation is attributed to the pairing of
electrons due to hydrogen atoms, which eliminates the

dangling bonds. On passivation, direct ↔ indirect band gap
transition has been found to occur in these PNRs. For
example, in αx1-PNR, CBM shifts from a point between Γ

and X, to Γ, while VBM remains at Γ; in γx1-PNR, CBM
shifts from X to Γ, while VBM remains at Γ; in fx1-PNR,
CBM remains at Γ while VBM shifts from X to Γ, leading to
an (indirect → direct transition) in these PNRs.

On the other hand, direct → indirect bandgap transition
occurs in βx1-PNR due to a shift of CBM from Γ to a point
between Γ and X, and of VBM from Γ to X, while in
θx1-PNR and fy3-PNR this transition occurs only due to a
shift of CBM from Γ to X, and from Γ to a point between Γ

and Y, respectively. The magnitude of the band gap is found
to be highly anisotropic, i.e., it is less for a PNR along the x-
direction than for a PNR along the y-direction of same

Figure 3. (Top) Bare PNRs: strain energy versus strain applied along the (a) x-axis, and (b) y-axis. (Bottom) (c) The line stiffness of bare
(WP) and passivated (P) PNRs considered.
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allotrope; for example, the bandgap of τx1 (Eg=0.73 eV)
and fx1 (Eg=0.32 eV) is respectively less than the bandgap
of τy2 (Eg=1.14) and fy3 (Eg=0.90). (table 1).

To calculate the carrier mobility, the effective masses of
electrons or holes need to be determined (equation (1)). The
electron (hole) effective mass is inversely proportional to the
curvature of the CBM (VBM) of a given band structure.
Therefore, the effective mass of an electron (hole) can be
calculated by fitting a small section of the E versus k surface
(figure 4) in the vicinity of the CBM (VBM) at zero strain.
The calculated results find a large value (2.26 me) of the
electron effective mass in the bare κ4x1-PNR, which can be
attributed to the presence of a flat conduction band (band
shown in red at the X-point in figure 4) arising due to the
dangling electron of the edge atoms. On passivation with
hydrogen atoms, the band due to the dangling electrons dis-
appears, and the CBM possesses a larger curvature which
gives rise to a small effective mass (0.04 me). The free charge
carriers at the edges of unpassivated PNRs become bonded to
hydrogen atoms, which effects their effective masses and
hence their mobilities.

The calculated carrier effective masses are found to be
anisotropic in nature (figure 5). Carrier effective masses of α-
PNR (me

*=0.12 me and mh
*=0.08 me) and R-PNR

(me
*=0.23 me and mh

*=0.08 me) are calculated to be the
lowest (close to zero line). The effective masses of most of the
PNRs are comparable with α-PNR and R-PNR (figure 5). On
passivation, the effective mass of most of the PNRs is found
to be less than 0.3 me. Note that the carrier mobility is
inversely proportional to 3/2 power of the effective mass,
hence lower effective mass leads to an increase in the
mobility.

Another factor which also determines the carrier mobility
is the deformation potential (DP) (equation (1)). DP is cal-
culated by the linear fitting of the valence band edge (VBE)/
conduction band edge (CBE) versus strain surface. The
magnitude of DP describes the change in energy of the
electronic band with the elastic deformation and, therefore,
describes the degree to which the charge carriers interact with
phonons. A lower value of DP indicates a weaker electron–
phonon coupling in the conduction (valence) band, thereby
contributing to an increase in the mobility of electrons (holes)
[30]. The values of DP are listed in table 1. Note that the
negative DP indicates that the deformation in the band edge
will be in the opposite direction on the application of a strain.

We now calculate the carrier mobility using equation (1).
Our results find the carrier’s mobility of given PNRs to be
highly anisotropic, e.g, μe (μh) of θy3 is 253 (11) times that of

Figure 4. Calculated band structures of phosphorene nanoribbons. Red indicates bands of the bare PNRs while passivated PNRs are shown
in blue.
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μe (μh) of θx1, and μe (μh) of fy3 is 20 (7) times that of μe (μh)
of fx1. Note that an anisotropy in the carrier mobility is also
reported for black (α) and blue (β) PNRs [7, 19, 31]. It is
important to mention here that we have considered a fixed
width of PNRs, though the mobility also depends on the
width of given ribbons [18, 32]. Although line stiffness
remains almost unaffected by the passivation of the edges but
the effective masses and deformation potentials show sig-
nificant modulation that leads to enhancement in the carrier
mobility on edge-passivation, e.g., hole mobility in β-PNR
increases 130 times and electron mobility in κ4-PNR increa-
ses 3000 times on passivation (figure 5 and table S2).

The carrier mobilities of most of the PNRs considered
are found to be comparable to that of monolayer black

phosphorene (i.e. 103 cm2 V−1 s−1) with the exception of β-
PNR, τ-PNR, R-PNR, and H-PNR. In particular, the electron
mobility of θ-PNR and the hole mobility of ε-PNR are found
to be one order higher than α-PNR (figure 5 and table S1 of
ESI). The electron mobility of the passivated PNRs, including
αx1, εx1, ηy2, θy3, fx1, fy3, κ4x1, Ry1, Ox2, and Hx1, is higher
than their hole mobility indicating their n-type semiconduct-
ing characteristic, whereas βx1, γx1, δx1, τx1, τy2, ηx3, and θx1
behave like p-type semiconductors owing to their higher
hole mobility. Among the PNRs considered, αx1, δx1, εx1,
τx1, τy2, ηx3, θx1, fx1, fy3, κ4x1 and Ox2 PNRs change
their carrier mobility, thereby, their semiconducting character
(n-type↔p-type) after the passivation of the edges with H
atoms. Our results indicate that the intrinsic band gap and

Figure 5. The effective mass and mobility of electrons and holes for bare and passivated PNRs at T=300 K.
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high carrier mobility possessed by these PNRs may find
various applications in nano- and opto-electronics.

4. Summary

The stability, electronic and mechanical properties of nanor-
ibbons of 13 phosphorene allotropes, namely α-P, β-P, γ-P, δ-
P, ε-P, τ-P, η-P, θ-P, f-P, κ4-P, R-P, O-P and H-P have
been investigated. The magnitude of the formation energies of
the PNRs considered is found to be comparable to their
monolayer counterparts, indicating their ease of formation.
Deformation potential theory within the effective mass
approximation has been applied to the most stable semi-
conducting bare and passivated PNRs in order to analyse their
carrier transport properties. On the passivation of edges, the
band gap increases, along with direct↔indirect transition in
some cases. The effective mass of most of the PNRs is less
than 0.3 me. The carrier mobility of most of the PNRs is found
to be comparable to that of the monolayer α-P. The unique
features of the PNRs considered render them favorable 1D
materials to be used in applications relating to phosphorene
based devices.
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