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Buckling in wurtzite-like AlN nanostructures and crystals: Why nano can be
different
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Abstract: The buckling of hexagonal layers in bulk
and nanostructures of AlN is analyzed in the framework
of atomistic and first principles techniques. At ambient
conditions, the wurtzite structure (B4) of AlN consists
of buckled hexagons. On the other hand, a non-buckled
Bk structure is found to be metastable at zero pressure,
being favored at higher pressures. It is suggested that
the energy ordering of B4 and Bk may change in finite
systems; an assertion tested in this study by considering
finite slabs, nanobelts, and nanorings, and comparing the
results with the previous studies on small clusters, and
periodic nanostructures. We find that the buckling in fi-
nite systems is much smaller than that in the bulk ma-
terial, with N atoms sticking out in the first layer, fol-
lowed by an even smaller opposite buckling of the next
layer, and negligible buckling of the inner layers. All the
structures considered present some degree of symmetry,
usually aσz symmetry plane, so that buckling is oppo-
site on both sides of the finite system and thus the dipole
moment is quenched. Periodic nanostructures display no
buckling, a fact that is related with their ability to model
the inner part of the system, neglecting geometric surface
effects. It is suggested that the zero-dipole and negligi-
ble buckling present in the small size regime will lead
to buckled hexagons in larger finite systems, similar to
the bulk behavior, thus introducing a change in the size
dependence of their structural and electronic properties.

keyword: Buckling, wurtzite, AlN, semiconductors,
bulk, slabs, nanostructures, clusters.

1 Introduction

The wurtzite structure (Strukturbericht symbol B4) is the
lowest energy one for many binary compounds at am-

1Dpt. Qúımica F́ısica y Anaĺıtica, Universidad de Oviedo, Oviedo,
Spain. Corresponding author: miguel@carbono.quimica.uniovi.es
2Department of Physics, Michigan Technological University,
Houghton, MI, USA.

bient conditions, ranging from ionic-like oxides (BeO,
ZnO), to semiconductors (AlN, GaN, SiC). For an AB
compound, it can be described (see Fig. 1) by alternat-
ing layers (abab. . . ), each layer consisting of a lattice of
hexagons with alternating A and B atoms on their ver-
tices. The hexagons arebuckled, that is, one of the types
of atoms (say A) is above the average layer level, and
the other (say B) below it. Successive layers alternate
the positions of A and B atoms and the direction of the
buckling, so that above the position of an A atom in the
first layer, in which it was above the average layer level,
sits a B atom in the second layer which is below the av-
erage level for that second layer. Thus, in addition to the
three intralayer A–B bonds, the buckling facilitates the
formation of an extra inter-layer A–B bond, giving a co-
ordination index of 4 to both atoms in the structure. Us-
ing theP63mc hexagonal space group, both atoms in the
wurtzite phase will occupy position 2b, (1/3,2/3,0) (A
atom) (2/3,1/3,z) (B atom). Notice that there is free-
dom alongz at these positions, which are interchange-
able, and so it is the difference inz that matters, not the
proposed values of 0 andz. We will now use thez value to
quantify the buckling of the structure. We note that the
above description is somewhat different from that used
by other authors, with atomic coordinates(1/3,2/3,0)
and(1/3,2/3,u) whereu = 1/2−z; this definition yields
half layer at the bottom, one full layer in the middle, and
another half layer at the top of the unit cell. In this paper,
we prefer the(2/3,1/3,z) coordinates because the unit
cell will include two complete layers.

In the description used here, az = 1/4− 1/(3(c/a)2)
value, combined with the idealc/a =

√

8/3 = 1.632993
ratio (thusz = 1/8 = 0.125), leads to a perfect tetra-
hedron coordination sphere. Despite first- and second-
neighbors bearing a symmetric disposition around a
given atom, each position is still affected by a non-zero
electric field if the crystal bond is heteropolar. This
makes each atom, occupying a polar position, acquire
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Figure 1 : Structures of the phases discussed in the text:
a) [001] view of B4 and Bk phases; b) [010] view of
B4 phase; c) [010] view of the Bk phase. A≡Al atoms
are larger light circles, B≡N atoms are smaller dark cir-
cles; empty circles represent atoms behind the projection
plane. Unit cells shown, including both hexagonal (left)
and orthorhombic (right) in panel a). Also shown in panel
b) are thec lattice parameter, and the bucklingd = zc.

a different dipole depending on its polarizability; in or-
der to equilibrate the forces thus introduced in the lattice,
real crystals deviate from this ideal structure. For exam-
ple, in the case of AlN, the values ofc/a = 1.6009 and
z = 0.1128 are at ambient conditions; thus, the tetrahe-
dra are somewhat flattened, with the intralayer A–A dis-
tances being 1.3 % larger than the interlayer ones, and
the hexagonal layer is further flattened, with the inter-
layer A–B bond being 2.5 % larger than the intralayer
ones. However, in an ideal infinite crystal, neither these
dipoles nor those due to the non-polar point-charge-like
distribution are considered to introduce a surface energy,
since the ideal crystal has no surfaces. This is not true,
of course, for real macroscopic B4 crystals, which never
have perfect[001] facets; the polar surface is usually re-
constructed, compensating the dipole which would lead
to huge energies in the macroscopic regime. The situ-
ation is different for microscopically finite systems (as
opposed to a macroscopic finite crystal): either slabs,
formally infinite on the perpendicular plane, or clusters,
completely finite, present a finite dimension along the po-
lar z direction. The uncompensated charge distribution
of a surface with the B4 structure leads to a finite surface
energy which increases with the size of the system.

The situation in nanoscale systems can thus be different
from the perfect crystal one. The dipole contribution to
the surface energy will affect the structure of nanosys-
tems in various ways. Since the main contribution comes
from the buckling (an unbuckled situation will have zero
dipole), this is the variable that we want to explore in
the present study. There are other possible structural re-

arrangements; Morgan and Madden [Morgan and Mad-
den (2007)], in a recent molecular dynamics simulation,
have found nanoscale domains with opposing buckling
resulting into no net dipole. However, this arrangement
does not scale up to the macroscopic regime, in which the
diffraction patterns do not show any domain structure. It
will not be further pursued in our work though there is a
possibility of its existence at the nanoscale regime. Our
focus will thus be on the buckling of the layers; it has
also been the subject of recent works by Allan’s group
on nanofilms [Freeman, Claeyssens, Allan, and Harding
(2006a,b)], which will be discussed along with our own
results in Section 3.

Coming back to crystals, there are indeed other structures
that come into play in AlN and related systems. First,
application of the high pressure leads to a more com-
pact, six-fold coordinated rock-salt type structure (B1).
Then, there is the related, and always similar in energy,
zinc-blende type structure (B3), which occurs at the am-
bient conditions for related materials like AlAs, AlP, or
GaAs. Furthermore, there is yet another related struc-
ture referred to as the Bk structure (see Fig. 1) in which
flat hexagonal layers (i.e.,z = 0) exist (e.g. BN). This
structure of BN is isoelectronic with the graphite struc-
ture consisting of hexagonal, flat layers, which are some-
times called graphene-like sheets. The aromaticity of the
hexagonal layers in graphite is sometimes assumed to be
the main cause for the planarity in BN, although there is
some controversy regarding the aromaticity of the layers
in the latter case. What is nonetheless true is that, be-
ing flat, there is no dipole in thez direction. In fact, the
Bk structure can be simply viewed as a distortion of the
B4 structure in which the coordination has changed to ei-
ther 5 if interlayer bonds are considered, or 3 if they are
not considered. The Bk structure (i.e.z = 0) is a critical
point in the energy surface corresponding to B4, since it
displays a higher symmetry (P63/mmc), and it plays an
important role in the high-pressure transformation from
B4 into B1 in the group V nitrides [Cai and Chen (2007)].

The focus of this paper is to study how buckling is af-
fected by various variables including pressure, size, and
composition on systems of different scales: crystals,
slabs, and nanostructures. In discussions, we will use
results from the previous studies, and present new ones
from our study to extract general conclusions. The rest
of the paper is organized as follows. First, we will briefly
describe the computational techniques employed in this
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study in Section 2. The main results will be presented and
discussed in Section 3. Our conclusions will be given in
Section 4.

2 Computational techniques

In order to secure a general behavior in crystals, slabs
and nanostructures, as method-independent as possible,
we have employed a wide range of methodologies to
treat these systems studied. Even more, we will also
use results obtained in our previous studies to further
strengthen the conclusions of this one. Simulation of
nanostructures is an actively developing field, in which
multiscale methods are key [Ghoniem and Cho (2002);
Shen and Atluri (2004); Tewary and Read (2004)].

First, we have employed periodic LCAO (linear com-
bination of atomic orbitals) DFT calculations as imple-
mented in Crystal03. The basis sets used were Pople’s
6-31G∗, reoptimized in the crystal, within the General-
ized Gradient Approximation employing the Becke ex-
change functional [Becke (1988)] and the Perdew-Wang
correlation functional [Perdew and Wang (1992)] (GGA-
BPW91). The code was used both in 3D periodic crys-
tal calculations, and on 2D periodic slabs calculations.
These results will be labelled Crystal3D and Crystal2D,
respectively.

We have also employedab initio derived pair poten-
tials (PIIP, perturbed-ion interionic potentials), generated
from accurate in-crystal electronic structure descriptions
[Costales, Blanco, Francisco, Pandey, and Martı́n Pend́as
(2005)]. These have been thoroughly tested for AlN, and
employed in other works [Costales, Blanco, Francisco,
Solano, and Martı́n Pend́as (2007)]. However, they do
have the drawback of being spherically symmetric, thus
not allowing the polarization of individual atoms. To
account for this, we have also used shell-model poten-
tials [Vail and Jiang (2006)], empirically derived, that we
will label SM. This model allows polarization through
the splitting of the atoms into core and valence-shell
charges, linked by a spring-like potential. This model has
proven to be very useful, specially in connection with lat-
tice dynamics and phonon calculations. All of these po-
tentials have been used to simulate 3D periodic crystals
and nanostructures, by means of thepairpot3 [Pend́as
(1996)] andcluster [Francisco (2001-2004)] codes, re-
spectively.

In addition to the new results in this paper, we will

also include the results from our previous studies. Par-
ticularly, results in nanoclusters [Kandalam, Blanco,
and Pandey (2001, 2002); Costales and Pandey (2003);
Costales, Kandalam, and Pandey (2003); Costales,
Blanco, Francisco, Martı́n Pend́as, and Pandey (2006)],
both employing DMol [Molecular Simulations, Inc.
(1995)], a numerical basis sets LCAO code, and Gaus-
sian [Frisch et al. (1998)], with 6-31G∗ basis sets, within
the DFT-GGA-BPW91 framework. We will also men-
tion the results of global optimizations of the struc-
tures of these nanoclusters employing the PIIP potentials
[Costales, Blanco, Francisco, Pandey, and Martı́n Pend́as
(2005)]. These potentials have also been used in simu-
lating nanocrystals [Costales, Blanco, Francisco, Solano,
and Mart́ın Pend́as (2007)], and nanobelts and nanorings
[Solano (2006)] within a pseudoperiodic model, and also
in previously unpublished full optimizations, with results
that are also relevant to the present discussion.

3 Results and discussion

In this Section, we will present results corresponding to
buckling in periodic and non-periodic systems. Although
there is axial symmetry in which sublayers of Al and N
atoms can be defined, the interlayer distances vary: both
the distance between the Al and N sublayers in a given
layer (d), and the distances between same-type layers,
can have different values within a single multi-layer sys-
tem, due to the lack of periodicity. Thus, for each system
we have defined an averaged value, together with an av-
eragec value as twice the average same-type interlayer
distance, and so az = d/c value comparable across all
systems can be defined (see Fig. 1). Although it may
be more properly termed as∆z, as it is a difference in
plane positions, and called average buckling or evenz-
equivalent buckling,d being the buckling proper, we will
use thez symbol and refer to it as buckling for simplicity.
It is important to notice that we definez as positive when
the N sublayer is above the Al layer, negative otherwise.
Although this is irrelevant for bulk systems, it is impor-
tant in finite ones: positivez means the N atoms stick
out of the system on its top part, negativez that Al sticks
out, the reasoning being obvious for the intermediate and
lower parts of the systems.

3.1 Bulk periodic systems

Let us start by studying how buckling affects bulk pe-
riodic systems. As previously stated, the Bk phase cor-
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responds to thez = 0 value within the B4 phase config-
uration space. Thus, a most convenient way to under-
stand how buckling takes place will be to plot energies
against buckling. This is done in Fig. 2 which collects
the results obtained from CRYSTAL, PIIP, and SM com-
putational methods. Let us now focus on the PIIP values
in Fig. 2. In addition to theE versus z curve (the one
labelledp = 0), the change in the appropriate static po-
tential, the Gibbs energyG = E + pV (static conditions
meansT = 0 and neglect of zero-point vibrations, i.e.
U = E), is plotted for different pressures, both positive
and negative. Let us also recall that, owing to the sym-
metry plane present at the Bk z = 0 structure, the curves
are symmetric for negativez, so that the Bk phase is al-
ways a critical point in the curve.

The B4 phase corresponds to the minimum atz ≃ 0.11
(see Tab. 1 for accurate values) forp = 0. This value
is higher in energy than thez = 0 one by about 0.04 eV
or 1 kcal/mol, contrary to the experimental observation
of B4 as the most stable phase. However, the difference
is, although opposite in sign, not large even in the most
accurate Crystal3D calculations, of about 0.26 eV or 6
kcal/mol; hence, both phases are quite close in energy,
a fact equally pointed by all the calculations reported in
Tab. 1. In the PIIP rigid pair potential calculations, the B4
phase is more stable than Bk for pressures more negative
than about−5 GPa, where both minima lie very close.
This would be our estimate for the B4⇀↽Bk phase transi-
tion pressure,ptr. For even more negative pressures, the
B4 minimum becomes deeper and deeper, and the barrier
from the Bk phase becomes smaller and smaller. This
will continue down to a pressure (our estimate is about
−35 GPa) in which the barrier will become zero. Below
this pressure, the Bk phase will be a maximum againstz
and hence mechanically unstable. We shall call it to be
the Bk phase instability pressure,pi(Bk). The same hap-
pens with the B4 phase if we increase the pressure above
zero: the Bk minimum will be deeper and deeper, and the
barrier from B4 to Bk will become smaller and smaller,
up to about 20 GPa, in which B4 will turn into an inflec-
tion point, no longer with zero derivative, and hence un-
stable. Thus, all optimizations starting above thispi(B4)
pressure will fall into Bk, z = 0.

The above results are quite general, as the different pan-
els in Fig. 2 show. They slightly differ in the∆E between
the Bk and B4 phases at zero pressure, but the pressure
evolution displays mostly universal features. For exam-
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Figure 2 : Static Gibbs energy (G = E + pV , in Eh) per
unit formula as a function of buckling (z) for AlN at vari-
ous pressures; the correspondingG0 values atz = 0 have
been subtracted to provide a common origin. a) PIIP val-
ues; b) SM values; c) Crystal3D values atp = 0, plus
theGz(p) ≃ Ez(0)+ pVz(0) approximation; d) the same
approximation applied to the PIIP values atp = 0.
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Table 1 : AlN B4 and Bk p = 0 bulk structural data, and
B4⇀↽Bk static energy difference,∆E.

z (B4) c/a (B4) c/a (Bk) ∆E/mEh

Exp. 0.1128 1.6009 — —
PIIP 0.1098 1.5542 1.2000 -1.625
SM 0.1095 1.5680 1.3644 3.978
Crystal 0.1183 1.6033 1.2720 9.420

ple, the SM non-rigid potentials in panel b achieve a B4
phase lower than Bk at zero pressure (see also Tab. 1),
having (pi(Bk), ptr, pi(B4)) values of about (0, 30, 50)
GPa. In the case of the computationally expansive Crys-
tal3D calculations, we have not optimizedG for p 6= 0.
However, we can estimate the pressure evolution by us-
ing Gz(p) ≃ Ez(0)+ pVz(0), that is, assuming thatE and
V at fixedz do not change much with pressure (this can be
tested for the PIIP potentials by comparing the real val-
ues in panel a and the estimate ones in panel d of Fig. 2).
The Crystal3D values obtained with this approximation
are presented in Fig. 2c. Again, the (pi(Bk), ptr, pi(B4))
values are about (−20, 30, 80) GPa. Thus, the actual
values vary across different methodologies, but the main
features and the (pi(Bk), ptr, pi(B4)) trends are universal.

The above picture seems to be general indeed, as there
are indications pointing at it in several studies from the
literature. For bulk solids, two different phase tran-
sition paths between B4 and B1 (rock-salt) have been
proposed: a tetrahedral one, and a hexagonal one that
passes through the Bk phase [Limpijumnong and Lam-
brecht (2001); Miao and Lambrecht (2003); Saitta and
Decremps (2004)]. Different materials favor one or the
other, but both display first-order transition paths, that is,
with the energy (or the appropriate thermodynamic po-
tential) being minimal with respect to distortions orthog-
onal in configuration space to the transition path. Con-
sidering the hexagonal path, the authors have focused on
the energy landscape at zero pressure, since their inter-
est was on the B4⇀↽B1 phase transition. Nevertheless,
from [Limpijumnong and Lambrecht (2001)] results one
can conclude that for GaN the Bk phase is energetically
unstable (pi(Bk)> 0), while for MgO it is the B4 phase
that is mechanically unstable (pi(B4)< 0; we have esti-
mated it to be about−10 GPa using out PIIP potentials);
in both cases,p = 0 is not within the [pi(Bk), pi(B4)]
range of simultaneous stability of both phases. [Saitta

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

−40 −30 −20 −10  0  10  20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

c/
a z

p/GPa

B4

Bk

 1.2

 1.4

 1.6

 1.8

0.00 0.05 0.10 0.15

c/
a

z

Crystal3D

PIIP3D

Figure 3 : Variation of the structuralc/a (B4 and Bk

phases) andz (B4 phase) parameters with pressure for
PIIP calculations on AlN. The inset compares thec/a
versus z behavior of these calculations with the corre-
sponding Crystal3D results.

and Decremps (2004)] results giveptr values for ZnO,
AlN, InN, GaN, and SiC, being 20, 25, 40, 182, and 198
GPa, respectively. On the other hand, [Cai and Chen
(2007)] results include energy (enthalpy or Gibbs func-
tion) landscapes for several pressures, and so we can es-
timate the whole (pi(Bk), ptr, pi(B4)) set of values from
them by assuming suitable linear behavior against pres-
sure of several energy differences. Thus, the values are
(−3, 27, 36) GPa for AlN, (91, 142, 157) GPa for GaN,
and (18, 30, 34) GPa for InN. Thus, these authors con-
firm that the Bk phase is metastable at zero pressure for
AlN, but not (by a large amount) for GaN. However, note
that none of these transitions is experimentally available,
since all of the computed systems have a lower transi-
tion pressure into the rock-salt B1 phase, six-fold coordi-
nated; although the Bk intermediate could be kinetically
found for AlN given the displayed barriers between Bk

and B1, this cannot happen for the other two systems.

All of the above results show some trends: first, the
(pi(Bk), ptr, pi(B4)) values, related among them for a
given material, increase with the trend of the material
to be on the B4 phase, and decrease when the trend to
be on the Bk phase increases. Given the results from
the literature, it is clear that they appear to be related
to the electronegativity differences. Thus, theptr values
of [Saitta and Decremps (2004)] are larger for smaller
electronegativity differences, for the highly ionic (large
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electronegativity difference) MgO evenpi(B4) is below
p = 0 in [Limpijumnong and Lambrecht (2001)], and the
[Cai and Chen (2007)] values for the group-III nitrides
are also in the inverse electronegativity difference order,
AlN<InN<GaN (although the extremely large values for
GaN do not support proportionality). These trends can be
viewed as chemical variations of a kind of driving force
for the B4→Bk transition: the larger this driving force
is, the smaller the values in the (pi(Bk), ptr, pi(B4)) set.
However, given the spread of these values, it seems diffi-
cult to find scaling rules that make the trend truly univer-
sal. Also, one must keep in mind that, in many of these
systems, the bulk B4 phase transforms directly into the
B1 phase upon increasing pressure, and hence the use-
fulness of a universal bulk relation would be limited. In
any case, indications of the driving force can be seen
from the behavior ofz andc/a with pressure; although
these trends are displayed in the bulk materials, they can
become more apparent and even experimentally observ-
able in nanostructures. Among these,z andc/a vary al-
most linearly withp in the B4 phase, but they display a
non-linear dependence at high pressure (see Fig. 3) as a
precursor of the instability; although found for the PIIP
calculations, the mainc/a(z) behavior (inset of Fig. 3)
is similar in Crystal3D values, being the deviation larger
near the Bk phase. In the latter phase,c/a is almost con-
stant withp except for very low pressures, where again a
curvature precursor of the instability is found.

3.2 Nanolayers

Let us now consider the case of nanolayers of AlN. These
are systems periodic in two dimensions, but finite in the
other one. In order to study buckling, we will consider
layers formed by stacking of the hexagonal graphene-
like sheets described in Section 1, that is,[001] slabs.
This system has been the subject of previous studies by
Allan’s group [Freeman, Claeyssens, Allan, and Harding
(2006a,b)], in which slabs of different materials are com-
puted using Perdew and Wang exchange and correlation
density functionals [Perdew and Wang (1992)] within a
pseudopotential+planewaves scheme as implemented in
castep. They found that non-buckled (z = 0) slabs were
more stable than the buckled ones (z 6= 0) up to a given
number of layers for each system: 4, 5, 6, 9, 12, and
> 15 for SiC, ZnS, GaN, ZnO, AlN, and BeO, respec-
tively. Notice that graphene-like, flat sheets are more per-
sistent for the more ionic, not the more covalent, systems,

contrarily to what covalent graphite itself might indicate.
Let us recall that aromaticity (or double-bond charac-
ter) is only important on bonds between second-period
atoms of the principal groups, like those in graphite and
(perhaps) BN (BeO being highly ionic is not expected
to display any aromaticity), but not when third-period
atoms are involved. Hence, none of the systems con-
sidered is aromatic, and so the graphite-like structure is
not favored in this respect. In fact, there is a correla-
tion between the maximum number of layers that stay
non-buckled and the difference in Pauling’s electronega-
tivities, that is mostly linear except for AlN (BeO stays
non-buckled [Freeman, Claeyssens, Allan, and Harding
(2006a)]): the more ionic a system is, the better it sta-
bilizes non-buckled slabs. Exceptionally, AlN displays
a larger stabilization of non-buckled slabs than its elec-
tronegativity difference may predict (it lies in between
GaN and ZnO, whereas it stabilizes 12 layers as com-
pared to 6 and 9 of GaN and ZnO, respectively). This
is in agreement with the trend obtained for bulk sys-
tems, where the electronegativity difference increase led
to smaller (pi(Bk), ptr, pi(B4)) values, and hence to a
larger preference for the Bk structure. There is another
striking fact in this direction: the buckled systems display
metalization in the surface layers due to electron trans-
fer from the N-terminated surface (2/3 from Al, 1/3 from
N) to the cations of the Al-terminated surface, according
to a Mulliken analysis [Freeman, Claeyssens, Allan, and
Harding (2006b)], whereas the non-buckled systems re-
main insulating. Clearly, the metalization becomes easier
when the electronegativity difference becomes smaller,
hence the above correlation.

We have also performed slab calculations in AlN, labeled
as Crystal2D (see Section 2), to analyze how their en-
ergy changes as a function of buckling and slab thickness.
Fig. 4 shows the energy change with respect to both vari-
ables. Since the slab is non-periodic in the perpendicular
direction, we cannot optimize inter-layer distances for a
fixed z value, so we have sampled thez dependence by
computing slabs fixed at the perfect crystal geometry for
a givenz value. Due to this restriction, the single-layer
slab has a spurious minimum withz 6= 0, which disap-
pears upon optimization (see below). Apart from this, all
other systems studied display a minimum atz = 0, cor-
responding to Bk-like non-buckled slabs. There is a cur-
vature change near the B4 buckling in slabs withn > 1,
which is close to developing a minimum forn = 7. Un-
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fortunately, we have not been able to converge the SCF
procedure in that region for larger slabs, but it seems that
the sequence will continue by forming a minimum cor-
responding to B4 slabs, and that minimum will gradually
become lower in energy than thez = 0 Bk-like slab mini-
mum, finally leading to the bulk behavior displayed also
in the graph (see the discussion in the previous Subsec-
tion).

We have also performed full slab optimizations from dif-
ferent starting geometries: that of the layers of the B4
bulk crystal, and that of layers of the Bk bulk crystal.
Given the trends in the curves in Fig. 4, all of the for-
mer that we were able to converge (up ton = 3 layers)
lead to the same minimum as the Bk-like ones, having a
structure very close to the latter. The optimizations start-
ing at the Bk geometry were performed up ton = 28,
always finding a minimum close to that structure; this is
not surprising, since the bulk Bk structure is a metastable
minimum atp = 0 (see Fig. 2 panel c and Fig. 4). Re-
garding the buckling, Fig. 5 depicts its value for the dif-
ferent layers of these optimized structures. All of them
have aσz symmetry plane, and the central layers of odd-
n slabs present no buckling. It is apparent that, except
for the smallestn = 2 andn = 3 slabs, all of the others
have a converged structure, in which the upper layer has
z ≃ 0.027 buckling, the next onez ≃ −0.006, the third
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 0

 0.01
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 0.03

 0.04

−15 −10 −5  0  5  10  15

z

layer #

n=2

n=28

Figure 5 : Crystal2D buckling for the different layers of
Bk-like optimized AlN slabs with sizes up ton = 28. Ow-
ing to theσz symmetry plane, layer numbering is as fol-
lows: for n odd, the central one is layer 0, the rest being
assigned positive and negative integers; forn even, the
two central layers are labelled layer 1/2 and layer−1/2,
the rest being labelled with half-integers so as to not over-
lap with those of the thinner slabs.

one aroundz ≃ 0.001, and the inner ones have negligible
buckling. This sequence is repeated symmetrically in the
bottom layers, with opposite signs: N atoms stick out in
both surfaces, and the total dipole moment is zero, owing
to the symmetry plane. It is worth noting that this plane is
not imposed in the optimizations starting at B4-like slab
geometries, but a consequence of the optimization. Since
we do not have converged results at large thickness, we
do not know if it remains true up to the crossover of sta-
bilities of Bk-like and B4-like slabs.

In order to locate the crossover of stabilities, Fig. 6 de-
picts the energy results of both types of slabs with ge-
ometries fixed at those of the corresponding bulk Bk

and B4 optimized geometries (fix curves) and the Bk-
like optimized ones described above (opt curves). It is
plain to see that the fix curves approach one another,
and that optimization does not introduce a very large en-
ergy change. Hence, an extrapolation of the trends of
the fixed-geometry curves can give a good estimate of
the crossover. This is shown in the inset, presenting en-
ergies as a function of 1/n, the reciprocal of the slab’s
thickness. The fixed-geometry data, after trimming the
lowest (usually out-of-trend)n values, fit very accurately
straight lines, withr2 values better than 0.999 in both
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Figure 6 : Crystal2D binding energy per unit formula
(Eb, in Eh) versus number of layers (n) of different buck-
led (B4) and non-buckled (Bk) AlN slabs, together with
the bulk limits. Data labelled fix corresponds to unit cells
fixed at their Crystal3D optimum geometries, opt to a full
optimization of the slab’s geometry. The inset shows the
trends against 1/n together with linear approximations.

cases, that cross atn = 18.24. The B4-like one crosses
the Bk optimized values aroundn = 20.26, however, and
so we estimate the crossover to be 18±2. This is some-
what larger than the [Freeman, Claeyssens, Allan, and
Harding (2006a)] value of 12, but it displays a reason-
able agreement.

3.3 Finite clusters

Let us now consider small clusters removing the effects
of periodicity. The smallest cluster having some B4 or
Bk-like feature is Al3N3: its lowest energy isomer is
a hexagonal ring, a planar,D3h, non-buckled structure,
in all three levels employed: PIIP potentials [Costales,
Blanco, Francisco, Pandey, and Martı́n Pend́as (2005)],
and DFT with numerical [Kandalam, Blanco, and Pandey
(2001)], and analytical [Costales and Pandey (2003)] ba-
sis sets. In the Al6N6 case, the lowest energy isomer in all
three levels consists of two hexagonal rings in the same
chair-like configuration but exchanging Al and N so that
inter-layer bonds are of the Al–N type (D3d symmetry).
In this case, there is a small buckling withz = 0.016 for
PIIP potentials [Costales, Blanco, Francisco, Pandey, and
Mart́ın Pend́as (2005)], andz = 0.033/0.034 for DFT
calculations, respectively using numerical [Kandalam,
Blanco, and Pandey (2002)] and analytical [Costales,

Kandalam, and Pandey (2003)] basis sets, to be com-
pared with the experimental B4 phasez = 0.1128. The
Al9N9 lowest energy isomer is again a stacking of alter-
nating Al3N3 rings, with D3h symmetry, both employ-
ing PIIP potentials and DFT with analytical basis sets
[Costales, Blanco, Francisco, Martı́n Pend́as, and Pandey
(2006)]. The structure presents a non-buckled central
ring, and symmetrical bucklings in the top and bottom
rings, amounting toz = 0.009 and 0.035 for the PIIP po-
tentials and DFT calculations, respectively. Finally, al-
though the Al12N12 lowest energy structure is a symmet-
ric globular one (in both PIIP potentials and DFT calcula-
tions), the second-lowest one is also an alternate stacking
of Al3N3 rings, in this case withD3d symmetry, in both
cases. The bucklings amount toz = −0.005 (−0.003)
for the inner layer, and toz = 0.011 (0.034) for the outer
layer in the PIIP potentials (DFT with analytical basis
sets) calculations. It is to be noted that the layers buckle
in opposite directions, instead of doing it in the same di-
rection as in the bulk material.

These results are consistent with those of the slab cal-
culations in the previous Subsection: buckling in small
clusters is much smaller than in the B4 phase, becoming
almost negligible. Also, all of these structures present
non-polar point groups, that is, buckling for the top part
is opposite to the buckling of the bottom part, leading to
a zero dipole moment. In addition, the buckling is largest
for the outer layers, rapidly decreasing and alternating in
sign as we proceed to inner layers. The clusters studied
with DFT so far are too small, with just one inequiva-
lent inner and outer layer at most. However, these trends
are confirmed in the global optimization of larger clusters
employing the PIIP potentials [Costales, Blanco, Fran-
cisco, Pandey, and Martı́n Pend́as (2005)], where we al-
ways found mostly flat inner layers and symmetric buck-
lings in the outer ones. Although the DFT results pre-
sented above, where polarization is not neglected, present
somewhat larger bucklings, it seems clear that buckling
in finite systems is much smaller than the bulk crystal
one. In fact, the driving force towards tetrahedral co-
ordination, and thus to alternate buckling in successive
layers, seems to be rather weak in these small clusters;
this is clearly a surface effect, trying to avoid three-fold
coordinated atoms in the outer layers and the formation
of large dipoles.
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3.4 Nanostructures

Nanostructures of ionic and semiconductor materials typ-
ically display structures almost periodic, with repeating
units very similar to the bulk crystal one. This is the case
of AlN, where the repeating unit is usually assumed to
be that of the B4 bulk phase. In this Subsection, we
will present first some results concerning full PIIP op-
timizations of nanobelts (in straight conformations) and
nanorings. The initial structure in the optimization of the
nanobelts will consist ofNa ×Nb ×Nc repetitions of an
orthorhombic unit cell commonly seen in these kind of
nanostructures, with cell axes being 2a+ b, b, andc in
terms of the B4 structure ones, having thus twice its vol-
ume andZ = 4 (see Fig. 1). Along theb and c axes,
repetitions ofN = (1,1.5,2,2.5) will be considered, the
half-cell Nb cases being included so the structure has a
symmetry plane (see Fig. 7), and the half-cellNc cases to
consider addition of single layers as in the previous Sub-
section (see Fig. 1). Along the orthorhombica axis, rep-
etition numbers from 4 to 50 have been considered in this
study. The initial structures for nanorings will be gener-
ated by bending the nanobelt into a circle, so that the in-
ner layer maintains the bulk-like distances; two possibil-
ities have been considered, having eitherb or (more ap-
propriate in comparing with experimental nanorings, see
[Kong, Ding, Yang, and Wang (2004)])c as the symme-
try axis of the ring. However, owing to the rather small
repetition numbers considered, the optimization deviates
from these structures, in some cases leading to unrelated
ones (i.e. globular or amorphous ones). This is some-
thing that does not happen for fairly large nanostructures,
with larger cohesion and smaller surface-to-bulk ratios.
We will present only results for optimizations that main-
tain their initial structures, so that some periodicity is re-
tained and buckling can be defined.

First, most of theNb = 1 structures, which do not com-
plete any hexagonal ring in they direction, end up as
single-layer nanostructures, and hence will be ignored.
Regarding theNc = 1 structures, with just two layers,
they tend to open into tube-like (torus-like in the case
of rings) structures; those that do not, display bucklings
in the range of 0.006 and 0.016. Let us recall that the
two-layer small cluster Al6N6 had az = 0.016 value ob-
tained using the PIIP potentials. In the rest of the cases,
the averagez values evolve very slowly withNa, converg-
ing in the range of 10–40 depending on the case consid-
ered, ring structures having a slower convergence. Upon

Nb 1 1.5 2 2.5

Figure 7 : Portions ofNb = (1,1.5,2,2.5) B4-like cells.

Nb increase, convergence is reached forNb = 2, and in-
deed itsz value(s) difference with respect to theNb = 1.5
value(s) is always smaller than 10 %. These bucklings
are z = 0.008 and 0 for the outer and inner layers of
Nc = 1.5; z = 0.009 and−0.002 for the outer and in-
ner layers ofNc = 2; andz = 0.009,−0.002, and 0 for
the outer, inner, and central layers ofNc = 2.5 nanostruc-
tures, respectively. These values completely agree with
those for Al9N9, and display only a minor deviation for
Al12N12, where the inner layer had az = −0.005 buck-
ling instead of the−0.002 buckling found in the four-
layer Nc = 2 nanostructures. Given the agreement also
found between small clusters and slabs computed using
DFT, we believe that all of these results can be extrap-
olated to other simulation techniques, and that systems
finite in thez direction will display consistently compa-
rable bucklings: N atoms sticking out at both extremes,
although with a buckling much smaller than the bulk one,
an opposite and very small buckling in the next-depth
layers, and negligible bucklings in further inner layers.

As previously mentioned, the sizes considered for the full
optimization are not too large. The reason for this is that
really robust gradient and hessian (or, at least, updated
hessian) optimization routines scale with large powers of
the number of atoms,N: single-point calculations scale
proportionally toN2, the optimization memory require-
ments grow roughly as 9N2, and the number of cycles
needed in a given optimization increases too, although in
a more unpredictable manner. To simplify the problem,
and attending to the near periodicity of the experimen-
tal nanostructures, we have previously developed several
periodic cluster and nanostructure models. In these mod-
els, strict repetition of a given motif is enforced, thus
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drastically reducing the number of variables. In the peri-
odic cluster model [Francisco (2004); Costales, Blanco,
Francisco, Solano, and Martı́n Pend́as (2007)] the mo-
tif or unit cell is simply repeatedNa ×Nb ×Nc times; in
the periodic nanostructure model, the repetition scheme
is superimposed to a deformation of the periodic space,
through a coordinate mapping, so that belts (straight ones
are equivalent to no mapping) and nanorings (by map-
ping theNa×Nb×Nc brick into a ring or cylinder crown)
can be built in the current implementation [Francisco
(2001-2004); Solano (2006)]. This has allowed us to
pass from a memory limitation of about 2500 atoms in
the full optimizations, to being able to cope with sizes
in the range of 30000 or more than 100000 atoms in
nanocrystals and nanostructures, respectively. Although
the energy evaluation still scales asN2, the number of
variables is reduced to those in the unit cell, and this can
even be further reduced by suitable bulk-like symmetry
constraints, hence greatly scaling down the optimization
memory and CPU time requirements. This periodicity
restriction will in fact help with one of the problems of
the full optimizations, namely that after optimization an
unintended structure was reached; in this way, although
not lowest energy minima, the constrained structures will
present smooth size evolutions, while in many cases they
will indeed be at least local minima.

The results in these periodic nanostructures are, however,
quite simple: either nanobelts, nanorings, or nanocrystals
of very different sizes (up to 360×6×6 testing allNb and
Nc and every 10 values ofNa for belts and rings, and up to
15×15×15 testing everyk×k×k value in the nanocrys-
tals) computed with AlN’s PIIP potentials lead to zero
buckling,z = 0. Although it may seem as a problem with
central potentials, we have also performed similar calcu-
lations with the polarizable SM potentials in nanocrys-
tals of AlN, with the same results. In addition, periodic
stacks of (i) alternating Al3N3 hexagons, and (ii) hexag-
onal arrangements of seven such hexagons (Al12N12 lay-
ers), have been examined. The B4-like minima is absent
up to about 150 layers for both PIIP and SM potentials,
except for the Al12N12 layers PIIP calculations, in which
no minima was found even for our largest 1200 layers
calculation; since the thickness of such arrangements is
orders of magnitude larger than the trust range of the po-
tentials, the conclusion is still that finite periodic arrange-
ments show no buckling. Thus, the absence of buckling
is a consequence of the imposed periodicity: since the

finite systems tend to have buckled structures with aσz

symmetry plane without net dipole, whereas periodicity
along thez direction leads to the same buckling in all lay-
ers and thus a net dipoleNa ×Nb ×Nc times that in the
unit cell, it seems that the compromise situation will be
that with z = 0, fulfilling both requirements at the same
time. This, in fact, agrees with the non-periodic finite
systems results within the limits imposed by periodicity.
Non-periodic systems had almost negligible buckling for
the inner layers, where periodicity was almost fulfilled,
having only a small buckling in the outer, frontier lay-
ers. In periodicity-enforced systems, geometric surface
effects are suppressed, only the energetics of the surface
being taken into account; therefore, periodic nanostruc-
tures resemble the mostly periodic part of the finite sys-
tems studied so far, with zero buckling, and Bk-like.

There have also been hints at Bk-like structures in other
simulations from the literature. For example, the Bk

structure appears during the course of molecular dynamic
simulations of the B4⇀↽B1 phase transition of small
CdSe nanocrystals [Grünwald, Rabani, and Dellago
(2006)], using empirical potentials (ionic plus Lennard-
Jones form) fitted to reproduce phase parameters and rel-
ative energy orderings of the phases involved [Rabani
(2002)]. It also appears in [Morgan and Madden (2007)],
in which it is the first structure the nanoparticle relaxes
into while starting a molecular dynamics simulation from
a static B4-like arrangement. However, in this case the
kinetic energy of the relaxation makes it overshoot this
zero-dipole structure, so it is not clear whether it is an
energy minimum in the generic potentials used in this
simulation. The final dynamic structure found was not, in
any case, simple B4: it consisted of moderately-sized do-
mains, each of them B4-like, but with opposite buckling
in contiguous ones. In this way, the large dipole associ-
ated with purely B4-like nanoparticles became quenched
in a manner that can be considered alternative to the
non-buckling proposed here. Finally, a phase transition
into a Bk-like phase has been recently obtained in the
simulation of ZnO nanowires under tensile stress along
the direction of the hexagonal layers [Kulkarni, Zhou,
Sarasamak, and Limpijumnong (2006)], clearly support-
ing the trends found here: although ZnO has a smaller
“driving force” towards Bk than AlN (see the discussion
above on bulk materials about the definition of this driv-
ing force and the discussion on slabs for the larger Bk

persistence in AlN than ZnO), the tensile stress enhances
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this “driving force” and transforms the ZnO wire from
B4 into Bk.

4 Conclusions

In this paper we have seen how hexagonal-layered struc-
tures, buckled (B4) and non-buckled (Bk), are involved
in materials ranging from ionic to semiconductors. In
bulk systems, there is a pressure range of simultane-
ous mechanical stability, which contains an equilibrium
pressure, although in these systems it is experimentally
masked by the transition into a cubic structure (B1). AlN
is one of the systems in which the preference towards the
B4 phase is smaller (its close parent BN in fact prefers
Bk), and has been the main focus of our calculations. It
has been postulated that buckling may play some role in
finite systems: polar surfaces are highly energetic, and
unfavorable for systems with high surface-to-bulk ratios;
the consistent preference for the buckled, polar B4 struc-
ture in bulk structures is related to the fact that bulk cal-
culations assume a surfaceless infinite crystal.

Slabs finite along the buckling direction but periodic in
the other two, small clusters displaying stacks of hexag-
onal rings, and nanobelts and nanorings built from B4-
like crystal pieces were considered as examples of finite
systems. It was found that, for all of the sizes considered
here, buckling was highly quenched as compared with
that in the bulk system. In fact, the finite systems dis-
played aσz symmetry plane that led to a zero total dipole,
since whatever buckling was present was compensated
with that for a symmetric layer on the other side of the fi-
nite system. The buckling was small, with N atoms point-
ing out, in all of the outermost layers, much smaller and
opposite to the latter in the next layer, and almost negli-
gible in inner layers. However, by examining the energy-
versus-buckling trend for slabs of increasing thickness,
it is concluded that there is a turning point for this trend
in which the B4-like structures become metastable, and
further down they will dominate in the way towards the
bulk behavior. This is consistent with other findings in
the literature. Thus, it is proposed that the size evolu-
tion for these kind of finite systems, nanostructures being
particularly important, will present a discontinuity on the
slope of size-dependent properties against the nanoparti-
cle size.

It was also found that periodic-like models lead essen-
tially to the correct behavior in nanobelts, nanorings, and
nanocrystals. They present zero-buckling due to the peri-

odicity imposed: if the buckling is periodically repeated
also along the buckling direction, it is enhanced rather
than quenched, and thus a non-buckled zero dipole struc-
ture is favored. However, this is indeed the result of non-
periodic calculations when the inner layers are consid-
ered: buckling is only present in the surface, not in the in-
terior part of the finite system, and hence the main trends
in e.g. energetic or elastic properties will be appropriate.

Finally, we would like to point out that “nano”can be-
come different from bulk (macroscopic) behavior, but
it will be so when “macro” allows for it. That is, the
nanostructures can be different from their B4 bulk par-
ent, presenting Bk-like behavior, but this new structure
must also be close enough in energy in the bulk regime.
The reason for this is that scale introduces new competi-
tors in the “nano” scene (surface energies), but they are
not overwhelming: the competition must also be close in
the bulk range for these effects to make a difference in
the nanoscale. That is the reason for selecting AlN as the
focus material here, which was already found to present
an anomalous behavior in our previous nanoscale simu-
lations.
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