## Ab initio electronic structure of superionic conductor Li<sub>3</sub>P

## Max Seel and Ravindra Pandey

Physics Department, Michigan Technological University, Houghton MI 49931, USA

Lithium phosphide (Li<sub>3</sub>P) has recently been introduced as a good lithium ion conductor. Results of ab initio Hartree-Fock calculations for the electronic structure and the optimized lattice parameters for the hexagonal P6/mmm space group are reported. The total energy, band structure, density of states and charge densities are obtained. The results demonstrate how the band structure of the insulator Li<sub>3</sub>P can be derived from the band structure of its metallic constituent Li<sub>2</sub>P and Li monolayers. The metal-insulator transition occurs if the inter-plane distance falls below 4.24 Å.

Most of experimental [1,2] and theoretical [3–6] efforts in lithium ion conductors for applications in solid-state lithium batteries have been focussed on lithium nitride ( $\text{Li}_3\text{N}$ ). Recently, lithium phosphide ( $\text{Li}_3\text{P}$ ) has been shown as a good lithium ion conductor, stable up to 2.2 V. In this paper we report the first ab initio Hartree–Fock calculation for  $\text{Li}_3\text{P}$  obtaining the lattice parameters, cohesive energy, band structure and density of states.

The crystal structure of Li<sub>3</sub>P belongs to the hexagonal P6/mmm space group and is shown in fig. 1. In this figure, Li<sub>2</sub>P layers alternate with pure Li lay-

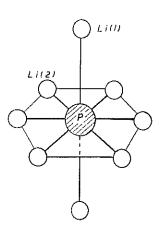



Fig. 1. Hexagonal P6/mmm structure of Li<sub>3</sub>P. The in-plane Li(2)-P distance is  $a/\sqrt{3}$ , the perpendicular Li(1)-P distance is c/2.

ers along the c direction. The Li atoms in the pure Li and Li<sub>2</sub>P layers are hereafter referred to as Li(1) and Li(2) atoms respectively. The in-plane Li(2)-P distance is  $a/\sqrt{3}$  and the perpendicular Li(1)-P distance is c/2.

The all-electron linear combination of atomic orbitals Hartree-Fock calculations are performed employing the CRYSTAL 88 program [7]. A recent monograph describes the details of the program and its application to wide variety of metallic and nonmetallic systems [8]. A series of calculations was performed to obtain a basis set of a total of 22 contracted Gaussian atomic orbitals for P representing 5s, 4p and 2d functions. These functions represent a triple zeta valence basis with a set of polarization functions. For Li, a core-like atomic orbital is supplemented by an outer sp shell and an additional s function giving a total of 3s and 1p functions. More details can be found elsewhere [9]. We note here that our use of extended and highly polarizable basis sets in the calculations reduces the risk of predetermining the character of the solution, e.g., the amount of charge-transfer from lithium to the anion and, consequently, the ionic or partially covalent character of Li-P bonds.

The only experimental study [10] on the preparation and characterization of Li<sub>3</sub>P reports the lattice parameters, c=7.59 Å and a=4.271 Å. In this configuration, a total energy per unit cell of -363.0339 hartree is obtained. However, very dif-

ferent results are obtained when we relax the configuration to minimize the total energy with respect to the lattice parameters a and c. The calculated lattice parameters, a=4.45 Å and c=4.80 Å, in this relaxed configuration are significantly different than the ones obtained from the diffraction study. The minimum total energy is now found to be -363.1470 hartree. The c/a ratio is 1.08 as compared to the re-

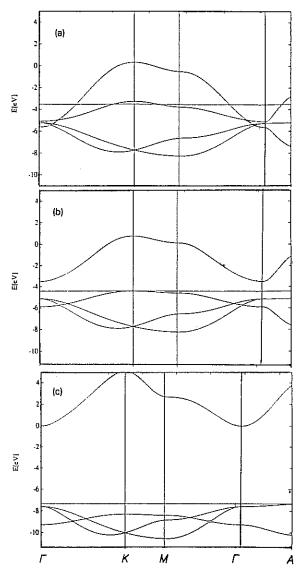



Fig. 2. Band structure of Li<sub>3</sub>P for (a) c=9.0 Å, a=4.271 Å; (b) c=8.09 Å, a=4.271 Å, and (c) for the equilibrium values c=4.80 Å, a=4.45 Å.

Table 1 Total energy, lattice parameter, band gap, charge distribution and the lowest non-zero multipole moments of Li<sub>3</sub>P. The corresponding values for Li<sub>3</sub>N are taken from refs. [4] and [9].

|                          | Li <sub>3</sub> P       | Li <sub>3</sub> N *)   |
|--------------------------|-------------------------|------------------------|
| Lattice parameter, a     | 4.45 Å                  | 3.65 Å                 |
| c                        | 4.80 Å                  | 3.87 Å                 |
| c/a                      | $1.08  \mathrm{\AA}$    | 1.06 Å                 |
| Total energy/unit cell   | —363.1470 <sup>ь)</sup> | —76.8924 <sup>ь)</sup> |
| HF cohesive energy       | 6.65 eV                 | 5.30 eV                |
| HF band gap              | 7.25 eV                 | 7.80 eV                |
| Correlated band gap a)   | 1.4 eV                  | 1.8 eV                 |
| Charge - P               | 16.67 N                 | 10.10                  |
| Li(1)                    | 2.10                    | 2.00                   |
| Li(2)                    | 2.11                    | 1.95                   |
| Dipole moment - P        | 0.87                    | 0.29                   |
| Li(1)                    | 0.13                    | -0.38                  |
| Li(2)                    | -0.11                   | -0.33                  |
| Quadrupole moment - P    | -63.19                  | -36.50                 |
| Li(1)                    | -1.82                   | -2.08                  |
| Li(2)                    | -0.36                   | 0.53                   |
| (Li) 1s core-level split | 0.10 eV                 | 0.35 eV                |

n) For Li<sub>3</sub>N, both calculated and experimental lattice parameters are about the same (ref. [4]).

ported one of 1.777. We note here that an excellent agreement [4] between the calculated and experimental values of the lattice parameters for  $\text{Li}_3\text{N}$  indicates the reliability of the method in predicting geometries. Since  $\text{Li}_3\text{P}$  also exists in the monoclinic phase, we suspect that this discrepancy is due to polycrystalline samples containing the polyphases of  $\text{Li}_3\text{P}$ .

In the equilibrium configuration, the HF cohesive energy is 6.65 eV and the minimum (indirect) energy gap between  $\Gamma$  and A points (fig. 2c) is found to be 7.25 eV, 0.6 eV smaller than the gap calculated for Li<sub>1</sub>N. The three overlapping uppermost valence bands are essentially associated with the 3p state of phosphorus. The phosphorus 3s band has almost no dispersion and lies about 9 eV below the 3p bands. The lowest conduction band has mainly lithium 2s character. If one estimates correlation contribution in the same way [4,11] as for Li<sub>3</sub>N, the cohesive energy becomes 12.5 eV. Comparison of the band structure, charge distribution and lowest non-zero multipole moments in table 1 shows that both electronic and ionic structures of Li<sub>3</sub>P in this configuration are similar to the one obtained for Li<sub>3</sub>N.

b) In hartrees.

To gain additional insight into the binding and electronic structure of  $\text{Li}_3P$ , we now consider its stability and band structure relative to the separated  $\text{Li}_2P$  and Li monolayer constituents. At infinite separation,  $\text{Li}_2P$  (with a partially filled P-3p<sub>z</sub> band) and Li (with a partially filled Li-2s band) form metallic layers as shown in fig. 3. The Fermi energy of  $\text{Li}_2P$  is at -3.5 eV and that of Li is at -1.8 eV. As we bring these metallic layers close together, we find that

it is now energetically favorable to transfer some of the Li charge (from the Li layer) to P (in the Li<sub>2</sub>P layer) by occupying the P-3p<sub>z</sub> band. At c=9.0 Å, (fig. 2a) the system is still metallic, with the Li-2s and P-3p<sub>z</sub> bands barely overlapping. For c=8.1 Å, (fig. 2b) the Li-2s band is completely pushed above the Fermi energy and a band gap opens. Here most of the valence electron of Li is transferred to the P atom. At the equilibrium configuration, the system

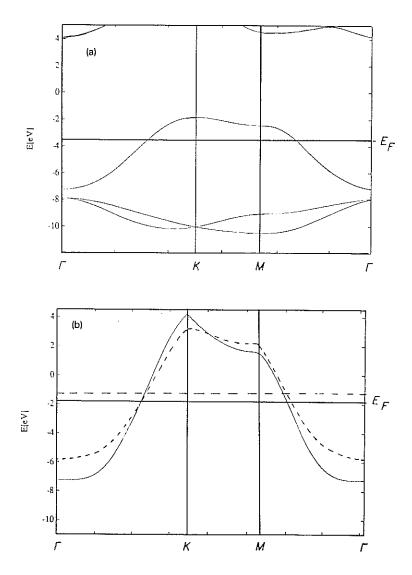



Fig. 3. (a) Band structure of a hexagonal Li<sub>2</sub>P monolayer for the equilibrium lattice constant a=4.389 Å; (b) band structure of a hexagonal Li monolayer for the equilibrium lattice constant a=3.194 Å. The dashed line shows the band structure if a is expanded to 4.271 Å.

is largely ionic in character, with a significant gain in energy of 4.17 eV/cell representing almost two-thirds of the total (Li<sub>3</sub>P) energy/cell of 6.65 eV. The main contribution to the cohesive energy of Li<sub>3</sub>P is therefore predicted to be due to the interaction between its constituent layers.

A similar study has been performed for lithium arsenide (Li<sub>3</sub>As). The same discrepancy between the proposed experimental and theoretical geometry was discovered. The energy minimum for Li<sub>3</sub>As is found for the same c/a=1.08 ratio as obtained for Li<sub>3</sub>P, with a=4.60 Å and c=4.96 Å.

In summary, ab initio electronic structure calculations obtain markedly different lattice parameters and less anisotropic electronic structure for Li<sub>3</sub>P and Li<sub>3</sub>As than reported from the diffraction study. The band structure for Li<sub>3</sub>P is almost identical to the one calculated for Li<sub>3</sub>N and its evolution can be understood in terms of the interaction between the constituent layers which are metallic at infinite separation.

## Acknowledgement

Helpful discussions with Dr. G. Nazri are gratefully acknowledged.

## References

- [1] A. Rabenau, in: Advances in Solid State Physics, ed. J. Treusch, Vol. XVIII (Vieweg, Braunschweig, 1978) p. 77.
- [2] G. Nazri, Mater. Res. Soc. Symp. Proc. 135 (1989) 117.
- [3] G. Kerker, Phys. Rev. B 23 (1981) 6312
- [4] R. Dovesi, C. Pisani, F. Ricca, C. Roetti and V.R. Saunders, Phys. Rev. B 30 (1984) 972.
- [5] M.L. Wolf, J.R. Walker and C.R.A. Catlow, J. Phys. C 17 (1984) 6623.
- [6] J.B. Goodenough, Proc. Roy. Soc. (London) A 393 (1984) 215.
- [7] R. Dovesi, C. Pisani, C. Roetti, M. Causa and V.R. Saunders, OCPE 577 (1989).
- [8] C. Pisani, R. Dovsi and C. Roetti, Hartree-Fock ab initio Treatment of Crystalline Systems, Lecture Notes in Chemistry 48 (Springer, Heidelberg, 1988).
- [9] M. Seel and R. Pandey, Int. J. Quantum Chem. QCS 25 (1991) 461.
- [10] G. Nazri, Solid State Ionics 34 (1989) 97.
- [11] E. Clementi, J. Chem. Phys. 38 (1963) 2248.