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Abstract
We have carried out a computational study for the nitrogen vacancy in charge
states +3, +2 and +1 in AlN in the metastable zinc-blende phase. The
vacancy and its four nearest-neighbour Al ions are treated as a molecular cluster,
embedded in an infinite classical shell-model crystal. The following ground
state properties, all of which are determinable from experiment, have been
calculated: total spin, nearest-neighbour displacement, electron spin density
at nearest-neighbour nuclei and breathing-mode force constant. The issue
of disproportionation among the three charge states is also addressed. Most
importantly, the optical excitation energies are evaluated.

1. Introduction

The group III nitrides AlN, GaN and InN are currently much studied because of their
potential for technological device development [1]. Their optical properties are particularly
of interest. As with all technological materials, useful properties depend heavily on the defect
content of the material. Both the intrinsic materials and their defect properties have received
extensive computational analysis, particularly by Van de Walle and co-workers, among others.
Specifically with respect to point defects in AlN, we cite the extensive study by Stampfl and
Van de Walle [2] and literature cited therein. The present work, dealing exclusively with the
nitrogen vacancy in cubic zinc-blende structured AlN, presents new computational results on a
number of experimentally relevant properties.

Most previous work on this system has used the density-functional analysis of electronic
structure, applied in the supercell approach in which periodic boundary conditions are applied
to a non-primitive unit cell of the crystal. The present work differs markedly in the modelling
method applied. First, instead of density-functional based analysis, the unrestricted Hartree–
Fock method is applied to a small molecular cluster, with second-order many-body perturbation
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theory correlation correction. Most importantly, this molecular cluster, containing the point-
defect, is embedded in an infinite crystal. Thus the present work deals with vanishingly
low defect concentration, whereas the supercell approach deals with a concentration which
is typically one atomic site in 32. This difference in defect concentration has the effect that
the crystal field seen by electrons in and near the defect is markedly different in the two cases.
In the supercell approach, the periodic array of point defects surrounding a particular one fails
to represent accurately both the Madelung field of the ions that comprise the crystal, and the
long-range polarization of the crystal that would be induced by charged point defects at low
concentration. On the other hand, the embedded molecular cluster approach, while representing
both Madelung and polarization features accurately, has its own shortcomings. Principal among
these is the fact that the molecular cluster cannot be rigorously represented as a local region
within a much larger crystal, in terms of many-electron effects. Furthermore, the limitation of
the quantum cluster in the present work to nearest-neighbour ions obviously needs discussion
and, ultimately, to be superseded by second-neighbour cluster calculations. These points will
be addressed in section 2.

In section 3 we give results, in three charge states of the nitrogen vacancy VN, for
nearest-neighbour nuclear displacements from perfect crystal positions, electron spin densities
at nearest-neighbour nuclei, breathing-mode force constants and optical excitation energies.
The spins for V n+

N (in the notation of Stampfl and Van de Walle) are 1, 0.5 and 0 (units h̄)
respectively for charge states n = 1, 2 and 3. Details of the electronic states involved in the
optical transitions are very interesting, and are described. The disproportionation amongst
the charge states, leading to instability of charge state 2, as described by Stampfl and Van de
Walle, is quantified. Some further discussion of the results and method is given in section 4.
Conclusions are summarized in section 5.

2. Model and computational method

Aluminium nitride and related compounds can be thought of, from various viewpoints, as wide
bandgap semiconductors, partly ionic semiconductors, or partly semiconducting ionic crystals.
It is the latter viewpoint that guides the present work. We use an embedded molecular cluster
approach, called the ICECAP method [3], in which the cluster, containing the point defect, is
embedded in an infinite crystal. The embedding region is represented by the classical shell
model for ionic crystals [4].

In the ICECAP method, the molecular cluster consists of bare nuclei and an appropriate
set of electrons. Alternatively, core pseudopotentials may be used, but they are not used
in the present work. With a reasonably flexible basis set for solution of the Fock equation
for the electrons, there is a problem with the interface between the molecular cluster and
the embedding shell-model region, namely that the minimum energy principle tends to push
electronic density outward into the classical surrounding region in a way that does not occur
in the real crystal. This can be realistically dealt with if the cluster is surrounded by ions that
are represented entirely by pseudopotentials which have been derived for the perfect crystal.
Best accuracy requires that this outer layer of pseudopotential ions lies at such a distance that
the ions are not significantly affected by the defect. The time required for a Hartree–Fock
calculation, and hundreds of them are required for the present study, increases sharply with the
number of atoms, and the number of atoms increases sharply with cluster size. For the present
work, we have taken the smallest cluster possible, namely the nitrogen vacancy site and its
four nearest-neighbour aluminium ions. Our attempt [5] to dress this with second-neighbour
nitrogen-ion pseudopotentials was unsuccessful, mainly because the pseudopotentials need to
represent filled-shell atomic cores, in this case N3− ions, which, as we shall see, is incompatible
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with the rest of the model. Similarly, our efforts [6] to incorporate the 12 second-neighbour
nitrogen ions in the cluster were defeated by convergence problems in the self-consistent field
treatment of the Fock equation. We do not doubt that this difficulty can eventually be overcome,
but we think that in the meantime the current results provide a valuable baseline for the problem.
A third approach used here, to represent the quantum mechanical effects of the embedding
crystal, is to fix the orbitals of the outer layer of ions of the cluster so that they conform to the
optimal orbital set in the perfect crystal. That this was not done in [7] accounts for the fact that
the present results for n = 3 do not agree with that earlier work.

The embedding shell-model crystal consists of point-charge ions interacting by Coulomb
forces and by short-range shell–shell forces that combine Born–Mayer and van der Waals
effects (a Buckingham potential). Each ion consists of two point charges, a core and a shell,
harmonically coupled. The total ionic charge is taken to be known for each species, leaving the
shell charges, along with shell–core force constants and Buckingham potential parameters, to
be determined. The determination is made by fitting calculated bulk properties to experimental
values. Ordinarily, for typical ionic crystals, the ionic charges are integers. For AlN and related
materials, however, the crystal is not well represented by filled-shell integer values, N3− and
Al3+. For the shell model itself, fractional ionic charges are not a problem. We emphasize
that, in the ICECAP method, the shell model is quite appropriate in the way it is used, in spite
of its extreme simplicity. The reason is that, apart from quantum mechanical boundary effects
for the molecular cluster, the embedding region only needs to represent the ionic charges and
mechanical properties of the crystal, and in the case of charged point defects, as here, the
dielectric polarization of an infinite region of crystal that is only weakly perturbed from the
perfect-crystal state. The shell-model parameters, derived as they are from at most harmonic
properties of the perfect crystal, allow the model to do this quite accurately.

The issue of effective ionic charge in AlN is addressed as follows. Starting from the
results of a Hartree–Fock band structure calculation [8] we determine the net charge associated
with each ionic species. This charge is determined by the method of Bader [9], in which the
electronic density is integrated from the nucleus out to the surfaces of minimum electronic
density that separate it from its bonded neighbours. For cubic AlN, the values turn out to be
±2.41 (units e, the proton charge). This approach to classical modelling for AlN, with the
corresponding shell-model parameters, has been covered in a previous publication [7].

The fractional ionic charge creates a problem when it comes to specifying an embedded
molecular cluster. The cluster is set up by starting with a shell-model version of the perfect
crystal. One then removes shell-model ions that will be replaced by the defect molecular cluster,
and replaces them by a set of nuclei and a set of electrons, keeping track of the energy involved,
so as to be able to state an energy for the whole system: defect cluster plus embedding. To
represent a defect V n+

N in this way, the cluster must have a charge n > 0, greater than the
corresponding region of perfect crystal had before the cluster was created. The perfect-crystal
cluster Al4N, with ionic charges ±2.41, has a charge of 7.23. The cluster contains four Al
nuclei with a total charge of 52. For the molecular cluster to have a charge of (7.23 + n),
its electronic charge must be (7.23 + n − 52) = (−44.77 + n). For n = 1, 2 and 3, the
electronic charges must therefore be −43.77,−42.77 and −41.77 respectively. However, a
molecular cluster calculation must be for an integral number of electrons, so rounding off the
above numbers we see that the cluster should have 44, 43 and 42 electrons respectively, for
n = 1, 2 and 3. Modelling calculations based on these numbers must, however, be recognized
as under-estimating the net charge of the cluster region by 0.23 (units e).

The Al basis set from the band structure calculation which, along with the N basis set, was
used in determining the ionic charge is also used here. As noted earlier [7], these atomic orbital
basis sets describe an Al4N cluster that is compatible with our embedding shell-model crystal
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Table 1. Computed ground-state properties of the nitrogen vacancy V n+
N in charge states n = 1, 2

and 3 in zinc-blende AlN. Total spin S (units h̄); fractional nearest-neighbour Al ion displacements
relative to perfect-crystal positions, (d−d0)/d0; electron spin density ρ at relaxed nearest-neighbour
Al ion nuclear positions (units h̄S a−3

0 ); effective force constant K for breathing mode of vibration

(units eV a−2
0 ); and lowest dipole allowed optical excitation energy�E (units eV): see also table 2.

Defect Spin S (d − d0)/d0 ρ K �E

V 1+
N 1.0016 0.126

0.1377a
51.1 1.69

0.0233b

V 2+
N 0.5031 0.030 0.1678 65.4 3.04

V 3+
N 0.0000 0.040 0 43.4 10.10

a Nuclei at (0.563, 0.563, 0.563) and (0.536,−0.563,−0.563); units, lattice spacing 2.1820 Å.
b Nuclei at (−0.563,−0.563, 0.563) and (−0.563, 0.563,−0.563); units, lattice spacing 2.1820 Å.

to good accuracy. Since the Madelung potential in the vacancy is highly attractive, the cluster
basis set must contain vacancy-centred orbitals, and these must include at least s and p type
because the vacancy site is not a centre of symmetry.

The process of replacing a perfect-crystal region in a shell model of the crystal by a
molecular cluster is accomplished in two steps, in practice. In the first step, the perfect-
crystal region is replaced by a shell-model representation of the defect. For this, the four
nearest-neighbour Al ions start off as in the perfect crystal, with point charges +2.41. Any
electronic charge that shows up in the vacancy, and any change in the Al-ion charges that is
associated with the defect, are represented by additional point-charge simulators. These point-
charge simulators must be such as to preserve the correct total charge of the cluster region.
For example, in charge state +1, where the defect region should have a total charge 8.23, a
vacancy simulator of −4.99 is compensated for by modifying the four Al charges from 2.41 to
3.305. These numbers are determined as follows. For the ground state of the defect, we want
the polarization and deformation of the embedding crystal to be compatible with the Hartree–
Fock representation of the cluster. This must be achieved by having the total energy of the
crystal, cluster plus embedding, minimized. The polarization field which does this is set up by
the vacancy simulator, whose charge is varied to optimization, while keeping the shell-model
defect region correctly normalized as to total charge. Ultimately, two other parameters must
be optimized along with the vacancy simulator, to self-consistently minimize the total energy.
These are the range of the vacancy-centred orbitals and the nearest-neighbour distance. In
the ICECAP method, the shell-model embedding relaxes to equilibrium with the cluster ions.
These quantities are further discussed in section 3.

3. Computed results

The computed results of most direct experimental interest are summarized in table 1. Each
requires some discussion.

3.1. Total spin S

Defined by

S(S + 1) = h̄−2 · 〈�|S2
op|�〉 (3.1)

where �Sop is the total spin operator for the many-electron molecular cluster, and � is the many-
electron Hartree–Fock wavefunction.
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3.2. Nearest-neighbour displacement

The equilibrium fractional displacement (d − d0)/d0 of Al ions that are nearest neighbours of
the vacancy, relative to the equilibrium N–Al distance d0 of the perfect AlN crystal in the zinc-
blende structure. In the case n = 1 for V n+

N , where the total spin is non-zero, the displacements
are not all equal, but occur in two equal pairs, corresponding to the fact that the ground-
state electronic charge distribution is of mixed parity: see Mulliken populations below, and
table 3. However, in the present work, these two sets of coordinates have not been separately
determined. Their differences are expected to be small because the Mulliken populations of
the two sets of ions are so close: see table 3. In the case n = 2, the equality of the Mulliken
populations for all four nearest neighbours in spite of non-zero spin comes from the fact that the
spin 1/2 is borne by a Fock orbital that is almost exactly p character, including the contributions
from nearest-neighbour Al ions.

3.3. Electron spin density ρ(�r) at nearest-neighbour nuclear positions

In Hartree–Fock approximation, the electron spin density at �r is h̄S times the electronic density.
In units of h̄S,

ρ(�r) =
{∑

j (up)

ρ j (�r)−
∑

j ′(down)

ρ j ′(�r)
}
, (3.2)

where

ρ j (�r) =
∣∣∣ψ j (�r)

∣∣∣2
. (3.3)

In equation (3.2), j (up) and j ′ (down) label occupied Fock eigenstates in the spin-up
and spin-down manifolds respectively. In equation (3.3), ψ j is an occupied Fock eigenstate.
The experimental isotropic hyperfine constant is determinable from ρ evaluated at nuclear
positions [10]. The two values given for the case n = 1 correspond to the two inequivalent
pairs of ions, as explained by the discussion in section 3.2 above.

3.4. Breathing-mode force constant K

The defected crystal has vibrational modes that are radially damped with distance from the
point defect. The effective force constant for such a localized breathing mode can be estimated
from:

Etot(D) = 1
2 K (D − D0)

2 (3.4)

where Etot is the total energy of the defected crystal, relative to equilibrium, D is the distance
of nearest-neighbour ions from the vacancy site, and D0 is the equilibrium nearest-neighbour
distance in the defect. Here, the small difference in the Mulliken populations of two pairs of
neighbours in spin state n = 1 and its attendant effect on local mode dynamics is neglected,
as for nearest-neighbour equilibrium positions: see section 3.2 above. A rough estimate of the
breathing-mode frequency can be obtained from

ω = (K/m)1/2 (3.5)

where in this case m might be taken to be four times the mass of a nearest-neighbour Al ion.
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Table 2. Computed optical excitation energies �E for V n+
N in z.b. AlN: Hartree–Fock,

approximate correlation correction and total (units eV).

Defect �E (Hartree–Fock) Correlation �E (total)

V 1+
N 2.03 −0.34 1.69

V 2+
N 3.20 −0.16 3.04

V 3+
N 11.01a −0.91 10.10a

a Corrected for significant spin mixing.

Table 3. Mulliken populations of V n+
N in z.b. AlN in ground and optically excited states, and at

nearest-neighbour Al sites.

Spin up Spin down Total

Ground Excited Ground Excited Ground Excited

Al (1, 1, 1) 4.8566 4.8693 5.0139 5.0007 9.8705 9.8699
Al (−1,−1, 1) 4.8090 4.7701 4.9882 5.0080 9.7972 9.7782
Al (−1, 1,−1) 4.8090 4.7701 4.9882 5.0080 9.7972 9.7782
Al (1,−1,−1) 4.8566 4.8692 5.0139 5.0007 9.8705 9.8699

V 1+
N (0, 0, 0) 3.6688 3.7212 0.9959 0.9826 4.6646 4.7038

Al 4.9829 4.9652 5.0073 5.0277 9.9902 9.9929
Al 4.9829 4.9551 5.0073 5.0057 9.9902 9.9208
Al 4.9829 4.9551 5.0073 5.0057 9.9902 9.9208
Al 4.9829 5.0204 5.0073 4.9854 9.9902 10.0094

V 2+
N 2.0684 2.1807 0.9707 0.9754 3.0391 3.1560

Al 5.0240 4.9958 5.0240 4.9769 10.0480 9.9724
Al 5.0240 4.9479 5.0240 5.0090 10.0480 9.9569
Al 5.0240 4.9950 5.0240 4.9997 10.0480 9.9947
Al 5.0240 4.9796 5.0240 4.9948 10.0480 9.9745

V 3+
N 0.9041 1.0816 0.9041 1.0199 1.8081 2.1015

3.5. Optical excitation energy �E

The optical excitation energy given is the lowest dipole allowed excitation from the many-
electron ground state to a many-electron excited state. The values given in table 1
include correlation correction determined by second-order Rayleigh–Schrödinger many-body
perturbation theory, approximated using the virtual Fock manifold. In table 2, Hartree–Fock
and correlation corrections are given separately. For n = 3 the excited state as calculated
contains significant mixing between the pure spin-zero state and the forbidden spin-one state
lying 3.46 eV below it. The forbidden state must therefore be projected out, in calculating the
excited state energy. This has been done, before and after correlation correction. The excited
states are calculated on the basis of the Franck–Condon approximation, in the following sense.
It is assumed that the optical transition occurs faster than the relaxation of the surrounding
crystal. Thus, in the present work, not only are nearest-neighbour nuclei and all shell-model
cores frozen in the positions determined by ground-state equilibrium, but so are shell positions.
An attempt to re-optimize the excited-state vacancy-centred atomic orbitals was abandoned, as
it led to orbitals that strongly overlapped the ions, without being either well localized in the
vacancy or broadly diffuse in the embedding region, suggesting large basis set superposition
error in the excited states. For the same reason, it has been necessary to keep the exponential
coefficients of optimized vacancy-centred s- and p-type orbitals the same in both ground and
excited states. A redistribution of electronic density between vacancy and nearest-neighbour
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Al ions, and among the Al ions, does occur in the transition, however.

3.6. Disproportionation

Disproportionation refers to the relative stability of different charge states within the crystal.
In the present case, the nitrogen vacancy, it can be quantified by the energy difference between
two vacancies of charge +2 each, and two vacancies of charges +1 and +3, respectively.
Schematically,

2V 2+
N →

(
V 1+

N + V 3+
N + ED

)
(3.6)

where ED is the disproportionation energy (intrinsically positive). Negative ED would indicate
that n = 2 was the more stable species. In the present case, ED can be evaluated from the total
energies of the three charge states, all calculated in exactly the same model. The result is

ED = 1.39 eV. (3.7)

4. Discussion of results

4.1. Fractional nearest-neighbour displacement

Stampfl and Van de Walle obtained values of 2.3%, 9.1% and 17.3% for the cases n = 1, 2
and 3 respectively. Surely, in our work as in theirs, the positive sign in all three vacancy charge
states is reasonable: the net positive charge causes mutual Coulomb repulsion among the Al
ions. The monotonic trend to larger values with increasing net charge is also easily understood
on that basis. In our work the results are quite different: 12.6%, 3.0% and 4.0%. We are not
able to offer a simple explanation of this difference. Apart from the considerable difference in
modelling approach, we note that as we change the defect charge from 1 to 2 to 3, we find that
the charge of each of the four nearest-neighbour Al ions remains at +3, within a variation of
less than 2%. The charge increments take place almost entirely in the well-localized vacancy
region. If another approach were to have the charge increments largely associated with the
nearest-neighbour Al ions, then one might well obtain quite different results because of the
complicated relationship between atomic arrangement and electronic distribution. See also
section 4.3.

4.2. The optical transition

The Fock eigenstates at the top of the occupied manifold in both the ground and excited states
are dominated by vacancy-centred orbitals, a fact that is reflected in table 3. In all three charge
states, the vacancy s-type orbital is doubly occupied by a spin-up–spin-down pair of electrons.
In charge state n = 2 there is, in addition, a spin-up p-type electron, at a considerably higher
energy. In charge state n = 1, there are two nearly degenerate p-type spin-up electrons as well
as the s-type spin pair. The fact that all electrons beyond those that maintain the filled-shell ionic
charge of +3 for the nearest-neighbour Al ions are localized in the vacancy makes the defect
appear and behave much like an F-type centre, in all three charge states. The ‘excess electrons’
are now those that are surplus to charge +3 for the Al ions, rather than as in the F centre, where
they are surplus to the crystal with a simple anion vacancy. The fact of increasing tendency
to definite p- or s-type character at the top of the valence band with increasing charge reflects
increasing localization arising as it does from increasing strength of the Coulomb potential.
The localization can be quantified by defining the range R of a Gaussian function (of which our
atomic orbitals are formed) to be

R = (2α)−1/2, (4.1)
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Table 4. Mulliken populations for V n+
N in z.b. AlN for vacancy-centred s, px , py and pz orbitals in

both ground and excited states.

Spin up Spin down Total

Ground Excited Ground Excited Ground Excited

n = 1
s 1.0935 1.0982 0.9860 0.9803 2.0804 2.0786
x 1.2843 1.2831 0.0083 0.0016 1.2927 1.2847
y 0.5850 0.6501 0.0003 0.0003 0.5853 0.6505
z 0.7060 0.6998 0.0003 0.0003 0.7063 0.6901

n = 2
s 0.9338 0.9435 0.9686 0.9702 1.9024 1.9137
x 1.1332 0.0012 0.0007 0.0008 1.1338 0.0020
y 0.0007 0.6180 0.0007 0.0022 0.0014 0.6202
z 0.0007 0.6180 0.0007 0.0022 0.0014 0.6202

n = 3
s 0.9023 0.0003 0.9023 1.0177 1.8046 1.0180
x 0.0006 0.5682 0.0006 0.0008 0.0012 0.5691
y 0.0006 0.1214 0.0006 0.0007 0.0012 0.1221
z 0.0006 0.3917 0.0006 0.0006 0.0012 0.3923

where α is the Gaussian exponential coefficient, and the factor 2 comes from considering the
square of the atomic orbital, corresponding to an electronic density. The ranges of vacancy-
centred orbitals, determined variationally, the same for s- as for p-type, are 0.88, 0.66 and 0.60
(units: perfect-crystal nearest-neighbour spacing) for n = 1, 2 and 3 respectively.

The selection rules for allowed electric dipole transitions in the nitrogen vacancy are
affected by the absence of a centre of inversion for the molecular cluster and by the crystalline
embedding. In each case, we have calculated the transition energy by de-occupying the highest
occupied ground state Fock eigenstate and occupying the lowest virtual eigenstate. The details
of the transition can be assessed from three sources: the Mulliken populations for Al ions in
ground and excited states of the defect, corresponding data for vacancy-centred orbitals and
details of the highest occupied Fock eigenstates in ground and excited states. The first two are
collected in tables 3 and 4. In thinking about these data, two things must be borne in mind.
First, Mulliken populations are not always a simple indication of the number of electrons in
an orbital or on a site because of orbital overlap. Second, the Fock eigenstates, representing
single-electron orbitals, are in fact molecular orbitals, typically with contributions from several,
if not all, atomic orbitals in the calculations. With these points in mind, we have the following
comments.

For charge state n = 1, ground and excited states as calculated are almost pure spin-one
states (spins 1.0016 and 1.0011 respectively: units h̄). From table 4 we see that in the ground
state the spin-paired vacancy-centred s-type electrons are fairly convincing, as is a spin-up px -
type electron, and somewhat more than one py–pz hybrid electron. There is almost no change
in the vacancy-centred orbital occupancies upon excitation, and yet the calculated excitation
energy is 2.03 eV (see table 2). We must turn to the Fock eigenstates for the top of the occupied
manifold in ground and excited states, not shown here, for an explanation. It turns out that the
three highest spin-up eigenstates are s-, py–pz- and px -type vacancy-centred molecular orbitals,
each with significant s-type admixtures from the nearest-neighbour Al ions. In the ground
state, the order of these molecular orbitals is as given, whereas in the excited state they are
in the order s, px and py–pz . Furthermore, in the transition, the px -type orbital has its sign
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changed relative to the ground state. The s- and py–pz-type orbitals are qualitatively unchanged
and both are unsymmetrical as to their Al orbital content, the py–pz orbital strongly so. The
result is an excitation in which an orbital that has odd parity with respect to inversion along
the x-axis reverses direction in the presence of s- and py–pz-type orbitals that are qualitatively
unchanged in the transition and that are unsymmetrical with respect to this inversion due to
their Al content.

For charge state n = 2, the picture from table 4 is much simpler than for n = 1. Here
again, the ground and excited state spins are almost pure, in this case spin-1/2. Specifically
the calculated values are 0.5031 and 0.5033 respectively (units: h̄). From table 4 we again see
the spin-paired vacancy-centred s-type electrons, plus a px -type electron in the ground state
and a py–pz-type electron in the excited state. Although the ground-state px -type electron is
almost pure p type, the excited-state py–pz-type electron has strongly mixed parity because of
substantial contributions from a pair of nearest-neighbour Al ions.

For charge state n = 3, we only have Mulliken population and Fock eigenstate data for the
mixed-spin excited state, from which we have projected the forbidden spin-flip excited state
to obtain the dipole-allowed excited state energy. For the ground state, the highest occupied
Fock eigenstate is almost pure even-parity vacancy s-like. The highest occupied mixed-spin
excited-state Fock eigenvector is a combination of px -, py- and pz-type vacancy orbitals, with
relatively weak parity-breaking Al atomic orbital components. Thus charge state +3 is quite
like the common s- to p-type transition seen for hydrogenic atoms, even as viewed through the
mixed-spin excited state solution. We believe that this reflects the relatively strong localization,
compared to charge states +2 and +1, due to the extra strength of the potential well at the
vacancy site. That is, the electrons bound in the vacancy are relatively unaffected by the ions
of the surrounding crystal, except for its Madelung field. The calculated excitation energy for
n = 3 is 10.1 eV. In the next section we discuss some implications of such a large computed
value.

4.3. Comments on the model

Some features of the model we have used require comment.
First, the use of classical modelling lacks the overlap and Pauli repulsion effects among

electrons arising from the embedding region. This raises the question of the accuracy of a
highly localized molecular cluster to simulate the defect. In the present work, limited to nearest-
neighbour atoms, we compensate for the lack of quantum mechanical embedding by limiting
the Al atomic-orbital basis set to that which has been derived for a perfect AlN crystal. This
limits the variational flexibility in such a way as to exclude spurious excursions of the electrons
into the classical shell-model region. As we have mentioned, application of this approach to
an embedded perfect-crystal molecular cluster shows good compatibility with the embedding
region in terms of equilibrium spacing. Such an approach in the past has also led to widespread
agreement with experimental results for point defects in strongly ionic crystals, and is therefore
reasonable for an initial theoretical analysis of this system.

We have mentioned that this defect, with electrons in the vacancy, has similarities with F
centres. It is well known that, for F centres, the possibility of highly diffuse localized states
overlapping a large number of ions needs to be considered (see for example [11] and other
references therein). In the form of modelling used here, an indication of such diffuseness is the
existence of an energy minimum at several atomic distances from the vacancy, as a function of
range (equation (4.1)) of vacancy-centred orbitals. For both ground and excited state orbitals,
we found a monotonic increase in energy as a function of range in all three charge states,
suggesting that both states are well localized within the vacancy. We say ‘suggesting’ because
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the issue is not fully resolved until polaronic corrections have been applied (as for example
in [11]).

The Al basis set that has been used is of the form (8511/511/1). One might be concerned
about the accuracy of the excited-state results in this case, particularly if the single-Gaussian
3s, 3p and 3d polarization orbitals fail to provide an accurate picture of the function-space
region available for the transition. This is particularly the case for charge state +3, where
our calculated excitation energy seems to be quite high. We have therefore introduced three-
component contractions for 3s, 3p and 3d orbitals [12], the first two directly from Huzinaga’s
compilation [13] for the free neutral Al atom. The 3d orbital is concocted by scaling from Kr.
For charge state +3, all qualitative features of the results are the same as, and numerically close
to, those with single-component 3s, 3p and 3d orbitals, presented in section 3. For charge states
+2 and +1, the excitation energies are qualitatively unchanged and dielectric polarizations
are similar to the results reported here. The transition still predominantly involves vacancy-
centred orbitals. The question of diffuseness of vacancy-centred orbitals remains outstanding
with this basis set. Mulliken populations in the vacancy are somewhat affected, but fractional
nearest-neighbour displacements are significantly changed, to 7.0% and 9.6% respectively. We
conclude that use of more accurate Al 3s, 3p and 3d orbitals does not materially improve on the
results reported in section 3.

It is an admitted weakness of the present work that second-neighbour N electrons are not
included in the Hartree–Fock cluster. At the same time, there are three details of the present
results that might be questioned. These are the high excitation energy for n = 3, the relatively
large nearest-neighbour relaxation for n = 1 and the fact that four electrons are bound within
the vacancy for n = 1, two of them not spin paired. It is interesting to consider the possible
role that nitrogen orbitals would play in determining these quantities.

In a deep potential well, which we have for charge-state 3, it is understandable that the
excitation energy will be high. However, instead of being vacancy-like, the excited state might
be thought to be significantly influenced by N-orbital content, or be dominated by N orbitals.
While the chemical character of valence and conduction band edges, as well as the bandgap,
can be radically affected by a defect [14, 15], it is worthwhile to examine the perfect crystal
case. We have re-examined the earlier study of the band structure of zinc-blende AlN [8], and
find the bottom of the conduction band to be predominantly of Al-orbital character, but with
about 40% N content. Indeed, a calculation of a perfect-crystal Al4N embedded cluster reveals
the lowest virtual state to be similar: dominated by Al p-type orbitals, but with non-trivial N
p-type content. Thus there is reason to suspect that this excitation may involve the second-
neighbour nitrogens. We have already shown that throughout our calculations the nearest-
neighbour Al ions hold their charge (in terms of Mulliken populations) at +3. They resist
taking on electronic charge in the n = 3 excitation, possibly reflecting the robustness of the
filled-shell configuration. By the same reasoning, one might expect second-neighbour nitrogens
to be receptive, moving their charges toward −3 from perfect-crystal values of −2.41. And
again, it is likely that even in the presence of nitrogen electrons, the two electrons drawn into
the vacancy come from the nearest-neighbour aluminium ions, as in the present calculation,
rather than from nitrogen ions. We recall that our calculated excitation energy is derived from
many-body, not single-particle, energies. The same applies to the experimental band width,
which is likely ∼6–7 eV, since it is known to be 6.28 eV in wurtzite AlN (see [2]). The
single-particle value from the Hartree–Fock band structure approach [8] is 14.3 eV, and the
highest-occupied-to-lowest virtual separation from the Al4N cluster calculation is 8.35 eV.

Regarding charge state 1, although the aluminium ions do not accept any of the four
vacancy-centred electrons, either in the ground state or in the excited state, nitrogen orbitals,
if they were significantly involved at the bottom of the virtual manifold, might do so. This
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outward shift of electronic charge would then affect the nearest-neighbour equilibrium distance
and reduce the vacancy occupancy.

5. Summary of conclusions

We have carried out a modelling study of the ground state and optical absorption of the nitrogen
vacancy in AlN in charge states 1, 2 and 3. We find the ground state spins to be 1, 1/2 and
0 (units h̄). Both ground and unrelaxed excited states principally consist of four, three and
two vacancy electrons respectively, with a spin-up–spin-down pair of s-type electrons in each
case, and with the aluminium ions maintaining filled-shell configurations in all three charge
states. In addition, charge state 1 has two unpaired p-type electrons, and charge state 2 has one
such electron. In a system lacking a centre of symmetry, the optical transitions are s-to-p-like
for charge state 3, and roughly p to mixed s- and p-type character in charge states 2 and 1.
The expected trend of nearest-neighbour relaxation for the defect as a function of charge is not
found. The computational model is discussed critically and at length.
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