PHYSICAL REVIEW B

VOLUME 45, NUMBER 6

1 FEBRUARY 1992-11

Embedded-cluster study of Cu™ -induced lattice relaxation in alkali halides
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We use an embedded-cluster approach to study the lattice relaxation induced by a substitutional Cu™*
impurity in alkali halides. The crystalline lattice is modeled as a quantum-mechanical molecular cluster
embedded in a classical lattice. The cluster is treated by using the unrestricted Hartree-Fock approxima-
tion and the embedding lattice is described by the shell model. The relaxations are obtained by compar-
ing the equilibrium configurations of the pure and Cu*-doped clusters. We found that, when the Cu*
ion is introduced into the alkali halides, the lattice relaxes in accordance with the free-ion size difference
between the Cu™ ion and the host cation. The correlation correction does not make a significant contri-

bution to the lattice relaxation.

I. INTRODUCTION

The lattice distortion around an isolated defect in ionic
crystals is a subject of scientific and industrial interest.
An accurate prediction of the behavior of such a distor-
tion can be obtained by computer simulations while it is
usually difficult to determine by experiments. For obvi-
ous reasons, one cannot stimulate an infinitely large crys-
tal on a computer; thus, finite-cluster methods are always
used for simulations. If bulk properties, such as lattice
relaxation around a defect, are to be obtained by using
such methods, the size of the finite cluster must be
sufficiently large and/or proper boundary conditions
must be placed on the cluster so that the lattice field in
the region of interest is reasonably close to that of the
bulk material. For ionic crystals, if free-space conditions
are used, a very large cluster of ions may be required to
achieve acceptable accuracy because of the long-range
Coulomb potentials. Such large clusters are likely to be
computationally unaffordable. A technique to overcome
this difficulty is to use quantum mechanics to treat the
defect and the region near the defect and to embed this
defect region in a lattice. Because the embedding lattice
is weakly perturbed by the defect region, it can be de-
scribed by a much simpler model. In this study, we apply
an embedded-cluster method, which is based on the unre-
stricted Hartree-Fock approximation and the shell mod-
el, to calculate the lattice relaxation due to a substitution-
al Cu™ ion in the eight alkali halides LiF, LiCl, NaF,
NaCl, KF, KCl, RbF, and RbCl. In order to see the con-
tribution of the electronic correlation of the electronic
correlation to the lattice relaxation, we include the
second-order many-body-perturbation-theory (MBPT)
correction in the calculation of the lattice relaxation of
LiF:Cu™ and LiCLl:Cu™.

II. METHOD

The methodology we use is called ICECAP (Ionic
Crystal with Electronic Cluster, Automatic Program).
This embedded-cluster approach is developed specifically
for studying defects in ionic crystals and has been de-
scribed in detail in a number of publications.? Briefly,
the crystalline lattice is modeled as two regions. The first
region is a molecular cluster (also referred to as the elec-
tronic cluster), which contains the defect and is often
called the defect cluster. This cluster is treated quantum
mechanically under the unrestricted Hartree-Fock (UHF)
approximation. The second region is an embedding lat-
tice in which the ions are described by the shell mode of
Dick and Overhauser.®> Each shell-model ion has a
charged core and a charged shell, coupled harmonically
through a force constant. It is dipole polarizable. The
interactions among these shell-model ions include the
long-range Coulomb interactions and the short-range in-
teractions described by a Buckingham-type potential,

V(r)=Be "P—Cr~°.

The self-consistency between the Hartree-Fock cluster
and the embedding lattice is achieved by matching the
multipole moments of the two regions. Charge neutrality
is also maintained in the entire modeling lattice.

The basis sets used for the UHF calculation are
Gaussian-type functions. The following sets are taken
from Huzinaga:* Li*(4), Nat(4,3/4), K*(4,3,3/4,3),
Rb*(4,3,3,3/4,3,3/4), F(4,3/4), and Cl(4,3,3/4,3).
The Cu™(5,3,3/5,3/5) set is developed by Meng and
Kunz.’ The parameters of the Buckingham-type poten-
tials and the shell parameters are taken from the work of
Catlow, Diller, and Norgett. 6
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TABLE I. Perfect lattice spacings (A).

Material Experimental® Calculated
LiF 1.996 2.056
LiCl 2.539 2.641
NaF 2.295 2.329
NacCl 2.789 2.817
KF 2.648 2.701
KCl 3.116 3.085
RbF 2.789 2.845
RbCl 3.259 3.292

*Extrapolated to O K, taken from P. B. Ghate [Phys. Rev. 139,
A 1666 (1965)].

III. RESULTS AND DISCUSSION

The equilibrium configuration of the Cu*-doped alkali
halides are determined by using seven-ion clusters. Each
cluster has a cation (the host cation or the Cu* ion) at
the center and six anions as first neighbors. We first cal-
culated the equilibrium configuration of the perfect lat-
tice. Table I lists the calculated first-neighbor spacings of
the pure alkali halides, showing close agreement with the
corresponding experimental values. Then, with the Cu*
ion substituting for the cation at the center of the cluster,
we calculated the equilibrium configuration of the defect
cluster. Since the defect is not charged, distortions in the
lattice can only arise form the size difference between the
host cation and the substitutional Cu® ion. Thus, we
compare in Table II the difference between the calculated
first-neighbor spacings and the difference between the
free-ion sizes of the Cut ion and the host cation. The
first column is the calculated perfect lattice first-neighbor
spacing. The second column is the first-neighbor spacing
when the host cation is substituted by the Cu™ ion. The
third column gives the change in the first-neighbor spac-
ing. The fourth column shows the difference between the
free-ion size of the Cu* ion and that of the host cation.
The changes in the first-neighbor spacings are consistent

with the ion size differences. Note that negative change
means inward relaxation of the first neighbors. Table II
also shows the energy gains resulting from the relaxation
of the lattice.

With the correlation (MBPT) corrections included, the
lattice relaxation in LiF:Cu™ and LiCl:Cu™ are not found
to be significantly different from those obtained without
the MBPT corrections. With the MBPT corrections, the
perfect lattice spacings are 2.038 and 2.641 A for LiF and
LiCl, respectively. Upon introduction of the Cu™ ion,
the first-neighbor spacings become 2.215 A (increased by
0.177 A) and 2.802 A (increased by 0.161 A) for LiF:Cu*
and LiCl:Cu™, respectively.

Recently, Jackson, Pederson, and Klein’ reported re-
sults of their calculation of the lattice relaxation of
LiCl:Cu™, using the local-density approximation (LDA).
With a 27-ion cluster (in free space), they found virtually
no lattice relaxation in the lattice, contrary to our result
and that of Meng and Kunz.’ In order to make a com-
parison, we did an ICECAP calculation on LiCl:Cut
with the same 27-ion cluster used by Jackson, Pederson,
and Klein. It turned out that the lattice relaxed outward
considerably, consistent with the result with the seven-
ion cluster. A comparison between our result and that of
Jackson, Pederson, and Klein is given in Table III. A
significant difference exists between our result and the re-
sult of Jackson, Pederson, and Klein. Although we used
different approximation procedures, we believe that nei-
ther the UHF approximation nor the LDA is the source
of the discrepancy. The following may be a more reason-
able explanation for the disagreement.

When doing finite-cluster calculations of ionic crystals,
one must include a large number of ions to obtain a
reasonably accurate Coulomb field in the region of in-
terest. Besides, if the finite set of ions has a net charge, a
spurious tunneling effect may arise even if a large number
of ions are included, as pointed out by Kunz and Vail.?
Jackson, Pederson, and Klein did their calculations with
a cation-centered 27-ion cluster (with a net charge of —1)
in free space, thereby taking into account up to the third
neighbors only. The Coulomb field in such a small clus-
ter is expected to be significantly different from that in
the bulk material. Besides, since the cluster is in free

TABLE II. First-neighbor spacings obtained with seven-ion clusters (distance in A, energy in eV).

Perfect Cu* doped Ion size
Material lattice cluster Change difference® Energy gain®
LiF 2.056 2.233 0.177(8.6%) 0.18 1.127
LiCl 2.641 2.815 0.174(6.6%) 0.18 0.212
NaF 2.329 2.369 0.040(1.7%) 0.01 0.044
NacCl 2.817 2.828 0.011(0.4%) 0.01 0.010
KF 2.701 2.569 —0.132(—4.9%) —0.40 0.159
KCl 3.085 2.965 —0.120(—3.9%) —0.40 0.162
RbF 2.845 2.629 —0.216(—7.6%) —0.52 0.281
RbCl 3.292 3.091 —0.201(—6.1%) —0.52 0.188

2Calculated from the data of V. M. Goldschmidt (1926) and L. Pauling (1960).

®Energy difference between unrelaxed and relaxed configuration.
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TABLE III. Calculated lattice relaxation in LiCl:Cu™ with a 27-ion cluster.

This study Jackson, Pederson, and Klein
(embedded cluster) (free space)
First-neighbor relaxation 7% 0.2%
Second-neighbor relaxation 6% fixed
Third-neighbor relaxation 4% fixed
Energy gain® 1.116 eV <0.01 eV

#Energy difference between unrelaxed and relaxed configuration.

space, its interaction with the environment is completely
neglected. Such interaction is often too important to be
neglected in defect-structure calculations. Furthermore,
Jackson, Pederson, and Klein did not allow all the ions in
the cluster to move freely. In our ICECAP calculation,
the quantum-mechanical 27-ion cluster is embedded in a
shell-model lattice and the entire region (the cluster and
the embedding lattice) is kept charge neutral. The
Coulomb field seen by the cluster is very close to that in
the bulk material and the interactions among the ions (in
the cluster and in the embedding lattice) are adequately
described. There is no constraint on the ions so that they
are all free to move. Therefore, the ICECAP methodolo-
gy is expected to give a reliable prediction of the Cu*-
induced lattice relaxation in the alkali halides.

IV. CONCLUSIONS

In summary, the results of this study predict significant
lattice relaxations in alkali halides when Cu™ is intro-

duced as an isolated substitutional impurity. The lattice
will relax outward if the Cu ion is larger than the host
cation or inward if the Cu™ ion is smaller than the host
cation. When calculating defect properties of ionic crys-
tals using finite-cluster methods, one must therefore em-
ploy an accurate description of the long-range Coulomb
field in the region of interest.
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