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The main idea: Supercooled water is a metastable state and, therefore, the associated phase 
transition must be irreversible.

We estimate a lower bound on the amount of latent heat liberated by freezing droplets. Based on 
a physical picture of the freezing process, we arrive at an estimate for the effective latent heat 
(calculated along a reversible path), suitable for heat budget calculations of glaciating clouds. In 
addition, we arrive at a quadratic dependence on supercooling for the irreversible contribution to 
heat exchange during the freezing process. The proportionality factor is estimated as -0.3 J mol-1 
K-2.

* See A. Kostinski and W. Cantrell, Entropic aspects of supercooled droplet freezing. J. Atmos. Sci., in press.
See also Cantrell et al., Measurements of the vapor pressure of supercooled water using infrared spectroscopy. J. 
Atmos. Oceanic Technol., in press.

Chain of reasoning leading to an estimate of the lower bound for the amount of latent heat 
released at a given temperature T. Panel A: Heat capacity vs temperature for supercooled 
water at constant pressure (Angell et al., 1982, Archer and Carter, 2000) and ice (Haida et 
al., 1974). Panel B: The results of our calculations for entropy of supercooled water vs
temperature via S(T) = S(Tm) -  ∫ c(T') / T' dT', where S(Tm) is the entropy at the melting 
point, c denotes the heat capacity of water or ice, taken from panel A, and the limits of the 
integral run from the melting point to the temperature, T. Panel C: Values of the latent heat 
of fusion from the Smithsonian Meteorological Tables (1951) , Fukuta and Gramada (2003), 
and Bertolini et al. (1985) as well as L= TΔS, with ΔS as input from panel B.
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Does the irreversibility associated with the freezing of supercooled water constrain the data?

dS system
dQ
T

In the case of freezing, dSsystem < 0 (Sice < Swater for any given T) and  dQ = L(T) < 0.

An approach to a reversible approximation for the effective latent heat of supercooled water. Upper panel:  Two ways of 
freezing supercooled water on an entropy vs. temperature plot. The vertical path is loosely implied by the phrase 
``supercooled droplet freezes at Tinitial''.  The reversible path consists of warming the supercooled water slowly to the 
melting point (succession of metastable equilibrium states), with the subsequent phase transition at the melting 
temperature. The resulting ice is then cooled to the initial temperature.
Lower panel: L'(T) = Lm - ∫ [cwater(T)-cice(T)]dT is computed using the heat capacity data of panel A of Figure 1 and the 
results are compared to data and to TΔS. Lm is the latent heat of melting at the normal melting point, and the limits on the 
integral run from the initial temperature to the melting point.

Freezing of supercooled water droplet: 
A schematic illustration of the proposed physical picture. Latent 
heat of fusion, liberated during the freezing, is conducted from the 
advancing interface into the supercooled water (heat flux to air is 
neglected at this stage). The advancing interface (source of heat) is 
at the melting point, Tm,  and a temperature gradient, normal to the 
interface, is set up throughout the aqueous part of the droplet. The 
corresponding gradient in the chemical potential is in the opposite 
direction. Thus, the ice is always created at Tm, latent heat is always 
liberated at Tm and, at the advancing interface, the following 

Thus: |L(T)|  ≥  |TΔS|.  In other words, between two specified states (e.g. supercooled water at 
some p,T and ice at the same p, T), the latent heat released by the freezing water must exceed 
TΔS. Caveat: specifying p and T does not fully specify the thermodynamic state of a solid. (See 
below)

Figure Caption

An approximation to the effective latent heat of freezing
While supercooled water droplets do not freeze slowly and reversibly in the atmosphere, this need not prevent 
one from finding a physically realizable reversible path that links the same initial and final states. Given that 
energy and entropy are state functions (see caveat below), such a path can be used to calculate heat exchange 
between droplets and the atmosphere, thereby establishing an expression for effective latent heat of supercooled 
water vs. temperature. The enthalpy difference is: L' = Lm – ∫ [cw(T)-ci(T)] dT and involves only the reversible 
latent heat at the melting point, Lm, and specific heat data for supercooled water and ice. The path described 
here corresponds to the dashed line in the upper panel of Figure 2 (bottom left). Note that the path 
corresponding to the solid line (vertical drop) is not a succession of equilibrium states.

Caveat: There is an implicit assumption that the final state of ice is the same for reversible and irreversible 
changes. Pressure and temperature do not fully determine the thermodynamic state of ice. The final volume, 
strain, and stress enter. See discussion of irreversibility below.

L' is compared to available data in Figure 2. As expected, L' exceeds TΔS everywhere except at the melting 
point. The apparent agreement between the Smithsonian Tables and L' is not surprising since values in the 
Smithsonian Tables are based on “reversible” tools like the triple point identity and Kirchoff's relation,       
dL/dT = cp,water – cp,ice. (Note that L' satisfies the relation at constant pressure.) More significant is the 
comparison of L' with the data from Bertolini et al., obtained from a direct calorimetric experiment. The data 
suggest the following questions:

Are the thermodynamic state and entropy of actual ice nearly those of the reversibly prepared ice?
Why should L' be a reasonable estimate to actual freezing of supercooled droplets in the atmosphere?  In other 
words: does the actual freezing mimic in some way the reversible path shown in the upper panel of Figure 2? 
Consider heat transfer within the supercooled droplet. 
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Why is the calorimetric data mostly below L'?  Answer: Irreversibly made ice has a higher entropy 
 The phase transition at Tm is reversible and does not generate net total entropy but temperature gradients do. 
We estimate the magnitude of the contribution from heat conduction, δsirr, as the production of the relevant 
relaxation time and entropy production. This results in:

boundary conditions hold: μice = μwater and Tice = Twater =  Tm. The water is warmed up in a thin ``boundary layer'' 
near the interface, one fluid filament at a time so that the effective latent heat can be reasonably approximated 
by L'(T) = Lm - ∫ [cwater(T)-cice(T)]dT when the ambient air temperature remains constant. For the more general 
case of air temperature Tf at the end of freezing, (Tinitial < Tf < Tm), the effective latent heat expression we 
propose is:  

L ' general T initial ,T f =Lm−∫
T initial

T m

cwater T dT∫
T f

T m

c iceT dT−T 2

Because of the continuous heat production within the droplet and the associated temperature gradients, there 
is no single temperature characterizing the droplet during the conversion of supercooled liquid water to ice. 
Yet, the temperature at which the liquid water is actually converted to ice and at which latent heat is released 
is the melting point, Tm. Therefore, ice is always created at the melting point and the heat flux at any point of 
the advancing and possibly complicated (dendritic) ice/water interface is directed outwards against the 
temperature gradients and from ice to supercooled water.

 s irr= ṡ~kd 2T
d T

T 2  d 2

 =c p d 3T
T 

2

where k is the thermal conductivity of water, d is the diameter of the droplet, α is the thermal diffusivity of 
water, ρ is the density of water, and cp is the heat capacity (of the liquid).
To obtain an estimate in a non-dimensional form, we normalize by the reversible entropy, δSrev = L/Tm, 

where L is the latent heat released by the entire drop. Then:                                              where l is the specific 

latent heat of fusion. For an extreme supercooling of ~ 40 K, the correction would be a few percent. 

Our conjecture that “hurriedly” made ice has a higher entropy (and therefore releases less latent heat) is in 
agreement with Bertolini et al.'s data, which is consistently below L'. Note that the magnitude of the 
discrepancy between their data and L' increases with supercooling.

 sirr

 srev
= c pT

l T
T m 

Concluding remarks
● Reversible tools such as L = TΔS, the triple point identity, Kirchoff's rule, and even the Clapeyron 
equation must be applied with caution to phase transitions involving metastable phases.
● The proposed model predicts that the ice-water interface is at the normal melting point - i.e. at 
atmospheric pressure, ice is always created at 0 ºC.
● The effective latent heat is then:  L'(T) = Lm - ∫ [cwater(T)-cice(T)]dT.  The effective heat exchange between 
droplets in a glaciating cloud and the atmosphere can be approximated  using L'general (given above). (See 
Kostinski and Cantrell for an approximation of β.)
● The irreversibility correction is quadratic in supercooling. (We are attempting to confirm this 
experimentally.) 
● While the effect of irreversibility on the latent heat is likely to be (only) a few percent, the implications 
for the structural and optical properties may be profound. For instance, recall that configurational entropy,  
S ~ ln(M), where M is the number of defects. Thus, the number of defects in irreversibly made ice may 
depend exponentially on supercooling.


