MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) A non-conducting disk with a 1.0-mm thickness is lying flat. It has a 6.0 C/m^2 surface charge 1) on the upper surface and a -6.0 C/m² surface charge on the lower surface. In terms of ε_{0} , what is the approximate field strength 1.0 mm above the upper surface? A) $0.0 \, \text{N/C}$ B) $1.0/\epsilon_0 N/C$ C) $9/\epsilon_0 N/C$ D) $15/\epsilon_0 N/C$ 2) A small particle with a mass of 1.0 kg carrying a charge of 3.0 nC is at the surface of a charged 2) spherical conductor of radius 3.0 mm. If the surface charge density is 10.0 C/m^2 , find the acceleration of the particle. (The constant ε_0 is 8.85 × 10⁻¹² C²/N•m². The value of k is $9.0 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$.) A) $10 \hat{r} m/s^2$ B) $3400 \,\hat{r} \, m/s^2$ C) $30.000 \text{ rm}/\text{s}^2$ D) 0.0033 \hat{r} m/s² 3) A cubical surface with sides of length 2.001 m is centered on the origin. There are eight positive 3) charges located as follows: $1 \ \mu\text{C}$ at $x = 1.0 \ \text{m}$, $y = 1.0 \ \text{m}$, $z = 1.0 \ \text{m}$ 2 μ C at x = 1.0 m, y = 1.0 m, z = -1.0 m 3 μ C at x = 1.0 m, y = -1.0 m, z = 1.0 m 4 μ C at x = 1.0 m, y = -1.0 m, z = -1.0 m 5 μ C at x = -1.0 m, y = 1.0 m, z = 1.0 m 6 μ C at x = -1.0 m, y = 1.0 m, z = -1.0 m 7 μ C at x = -1.0 m, y = -1.0 m, z = 1.0 m 8 μ C at x = -1.0 m, y = -1.0 m, z = -1.0 m. Find the flux through the surface of the cube. B) $4 \times 10^3 \,\text{N} \cdot \text{m}^2/\text{C}$ A) $6 \times 10^{-7} \text{ N} \cdot \text{m}^2/\text{C}$ D) $4 \times 106 \text{ N} \cdot \text{m}^2/\text{C}$ C) $2 \times 10^3 \text{ N} \cdot \text{m}^2/\text{C}$

```
PH2200 Exam II
```

5) Consider the group of charges in this figure. All three charges have Q = 9.6 nC. What is their 5) electric potential energy?

7)

6) How much work does it take to move an electron 20.0 m at an angle of 30.0° to r̂, in the presence of a uniform electric field E = 5.0 r̂ N/C?
A) 100 eV
B) 87 eV
C) -87 eV
D) 50 eV

7) A uniformly charged ring of radius a is situated horizontally, as shown below. The net charge is positive. The location A is in the center of the ring. The location B is a distance *a* directly above the center. Location C is very far above the center of the ring. The voltage is zero at infinity. At which location is the voltage the highest?

9) A long rod has a charge density $\lambda = 4.0 \mu$ C/m. Find the electric field strength 3 m from the center of the rod measured perpendicular to the axis. Assume the radius of the rod is less than 3 m. 9)	8)	A copper wire of leng radius 2 <i>b</i> , forming one current is flowing thro magnitude of the elect A) two times stronge B) two times weaker C) four times weaker D) four times stronge	th <i>L</i> and radius <i>b</i> is attace long wire of length 2 <i>L</i> ough it. Relative to the e ric field within the wire er. c. r. er.	ched to another copper wi . This long wire is attached electric field within the wi e of radius 2 <i>b</i> is	re of length <i>L</i> and d to a battery, and a re of radius <i>b</i> , the	8)
center of the rod measured perpendicular to the axis. Assume the radius of the rod is less than 3 m. A) 0.15 MN/C B) 5.6×10^{-18} N/C C) 1.3μ N/C D) 0.024 MN/C 10) A spherical object with a 2.0 m radius has a charge spread throughout it with a uniform charge density, ρ . If the electric field strength 4.1 m from the center of the sphere is 2.0×10^{12} N/C, what is the charge density of the sphere? A) 110 C/m ³ B) 4.1 C/m ³ C) 6.4 C/m ³ D) 2.0 C/m ³ 11) A wire has a current of 4.0 mA in it. How many electrons pass a given point in a minute? A) 4.2×10^{14} B) 1.5×10^{18} C) 240 D) 3.6×10^{-15} 12) A current flowing through a copper wire (which is connected to a battery) is due to A) positively charged particles being attracted to the negative terminal of a battery. B) electrons being accelerated by an electric field. C) electrons being bumped by positively charged particles. D) positively charged particles being pushed off the battery terminal. 13) A silver wire with resistivity $1.59 \times 10^{-8} \Omega \cdot m$ has a 1.0 A/mm ² current density. What is the magnitude of the electric field inside the wire? A) $0.0099 W/m$ B) $0.613 V/m$ C) $0.025 V/m$ D) $0.016 V/m$	9)	A long rod has a charg	$ze density \lambda = 4.0 \mu C/m$. Find the electric field str	ength 3 m from the	9)
3 m. A) 0.15 MN/C C) 1.3 μN/CB) 5.6×10^{-18} N/C D) 0.024 MN/C10)10) A spherical object with a 2.0 m radius has a charge spread throughout it with a uniform charge density, ρ. If the electric field strength 4.1 m from the center of the sphere is 2.0×10^{12} N/C, what is the charge density of the sphere? A) 110 C/m ³ B) 4.1 C/m ³ C) 6.4 C/m ³ D) 2.0 C/m ³ 10)11) A wire has a current of 4.0 mA in it. How many electrons pass a given point in a minute? A) 4.2×10^{14} B) 1.5×10^{18} C) 240 D) 3.6×10^{-15} 11)12) A current flowing through a copper wire (which is connected to a battery) is due to A) positively charged particles being attracted to the negative terminal of a battery. B) electrons being accelerated by an electric field. C) electrons being bumped by positively charged particles. D) positively charged particles being pushed off the battery terminal.12)13) A silver wire with resistivity $1.59 \times 10^{-8} \Omega \cdot m$ has a 1.0 A/mm ² current density. What is the magnitude of the electric field inside the wire? A) 0.0009 W/m10) 0.016 W/m	- /	center of the rod meas	ured perpendicular to t	he axis. Assume the radiu	is of the rod is less than	
A) 0.15 MN/C B) $5.6 \times 10^{-18} \text{ N/C}$ C) $1.3 \mu \text{N/C}$ D) 0.024 MN/C 10) A spherical object with a 2.0 m radius has a charge spread throughout it with a uniform charge density, ρ . If the electric field strength 4.1 m from the center of the sphere is $2.0 \times 10^{12} \text{ N/C}$, what is the charge density of the sphere?10) $_$ A) 110 C/m^3 B) 4.1 C/m^3 C) 6.4 C/m^3 D) 2.0 C/m^3 11) A wire has a current of 4.0 mA in it. How many electrons pass a given point in a minute?11)A) 4.2×10^{14} B) 1.5×10^{18} C) 240 D) 3.6×10^{-15} 12) A current flowing through a copper wire (which is connected to a battery) is due to A) positively charged particles being attracted to the negative terminal of a battery. B) electrons being accelerated by an electric field. C) electrons being bumped by positively charged particles. D) positively charged particles being pushed off the battery terminal.13)13) A silver wire with resistivity $1.59 \times 10^{-8} \Omega \cdot \text{m}$ has a 1.0 A/mm^2 current density. What is the magnitude of the electric field inside the wire? A) 0.0099 V/m D) 0.016 V/m		3 m.		10		
 C) 1.3 μN/C D) 0.024 MN/C 10) A spherical object with a 2.0 m radius has a charge spread throughout it with a uniform charge density, ρ. If the electric field strength 4.1 m from the center of the sphere is 2.0 × 10¹² N/C, what is the charge density of the sphere? A) 110 C/m³ B) 4.1 C/m³ C) 6.4 C/m³ D) 2.0 C/m³ 11) A wire has a current of 4.0 mA in it. How many electrons pass a given point in a minute? A) 4.2 x 10¹⁴ B) 1.5 x 10¹⁸ C) 240 D) 3.6 x 10⁻¹⁵ 12) A current flowing through a copper wire (which is connected to a battery) is due to A) positively charged particles being attracted to the negative terminal of a battery. B) electrons being accelerated by an electric field. C) electrons being bumped by positively charged particles. D) positively charged particles being pushed off the battery terminal. 13) A silver wire with resistivity 1.59 x 10⁻⁸ Ω • m has a 1.0 A/mm² current density. What is the magnitude of the electric field inside the wire? A) 0.0099 V/m B) 0.63 V/m C) 0.025 V/m D) 0.016 V/m 		A) 0.15 MN/C		B) 5.6 x 10-18 N/C		
 10) A spherical object with a 2.0 m radius has a charge spread throughout it with a uniform charge density, ρ. If the electric field strength 4.1 m from the center of the sphere is 2.0 × 10¹² N/C, what is the charge density of the sphere? A) 110 C/m³ B) 4.1 C/m³ C) 6.4 C/m³ D) 2.0 C/m³ 11) A wire has a current of 4.0 mA in it. How many electrons pass a given point in a minute? A) 4.2 x 10¹⁴ B) 1.5 x 10¹⁸ C) 240 D) 3.6 x 10⁻¹⁵ 12) A current flowing through a copper wire (which is connected to a battery) is due to A) positively charged particles being attracted to the negative terminal of a battery. B) electrons being accelerated by an electric field. C) electrons being bumped by positively charged particles. D) positively charged particles being pushed off the battery terminal. 13) A silver wire with resistivity 1.59 x 10⁻⁸ Ω • m has a 1.0 A/mm² current density. What is the magnitude of the electric field inside the wire? A) 0.0099 V/m B) 0.63 V/m C) 0.025 V/m D) 0.016 V/m 		C) 1.3 μN/C		D) 0.024 MN/C		
A) 110 C/m^3 B) 4.1 C/m^3 C) 6.4 C/m^3 D) 2.0 C/m^3 11) A wire has a current of 4.0 mA in it. How many electrons pass a given point in a minute?11)A) 4.2×10^{14} B) 1.5×10^{18} C) 240 D) 3.6×10^{-15} 12) A current flowing through a copper wire (which is connected to a battery) is due to12)A) positively charged particles being attracted to the negative terminal of a battery.12)B) electrons being accelerated by an electric field.12)C) electrons being bumped by positively charged particles.12)D) positively charged particles being pushed off the battery terminal.13)13) A silver wire with resistivity $1.59 \times 10^{-8} \Omega \cdot m$ has a 1.0 A/mm^2 current density. What is the magnitude of the electric field inside the wire?13)	10)	10) A spherical object with a 2.0 m radius has a charge spread throughout it with a uniform charge density, ρ . If the electric field strength 4.1 m from the center of the sphere is 2.0×10^{12} N/C, what is the charge density of the sphere?				10)
 11) A wire has a current of 4.0 mA in it. How many electrons pass a given point in a minute? [11]		A) 110 C/m ³	B) 4.1 C/m ³	C) 6.4 C/m ³	D) 2.0 C/m ³	
 A) 4.2 x 10¹⁴ B) 1.5 x 10¹⁸ C) 240 D) 3.6 x 10⁻¹⁵ 12) A current flowing through a copper wire (which is connected to a battery) is due to A) positively charged particles being attracted to the negative terminal of a battery. B) electrons being accelerated by an electric field. C) electrons being bumped by positively charged particles. D) positively charged particles being pushed off the battery terminal. 13) A silver wire with resistivity 1.59 x 10⁻⁸ Ω • m has a 1.0 A/mm² current density. What is the magnitude of the electric field inside the wire? A) 0.0099 V/m B) 0.63 V/m C) 0.025 V/m D) 0.016 V/m 	11)	A wire has a current of 4.0 mA in it. How many electrons pass a given point in a minute?				11)
 12) A current flowing through a copper wire (which is connected to a battery) is due to A) positively charged particles being attracted to the negative terminal of a battery. B) electrons being accelerated by an electric field. C) electrons being bumped by positively charged particles. D) positively charged particles being pushed off the battery terminal. 13) A silver wire with resistivity 1.59 x 10⁻⁸ Ω • m has a 1.0 A/mm² current density. What is the magnitude of the electric field inside the wire? A) 0.0099 V/m B) 0.63 V/m C) 0.025 V/m D) 0.016 V/m 		A) 4.2 x 1014	B) 1.5 x 1018	C) 240	D) 3.6 x 10-15	
13) A silver wire with resistivity 1.59 x $10^{-8} \Omega \cdot m$ has a 1.0 A/mm ² current density. What is the magnitude of the electric field inside the wire?	12)	 12) A current flowing through a copper wire (which is connected to a battery) is due to A) positively charged particles being attracted to the negative terminal of a battery. B) electrons being accelerated by an electric field. C) electrons being bumped by positively charged particles. D) positively charged particles being pushed off the battery terminal. 				12)
	13)	A silver wire with resimagnitude of the elect	stivity 1.59 x $10^{-8} \Omega \cdot m$ ric field inside the wire	has a 1.0 A/mm ² current?	t density. What is the $D = 0.016 V/m$	13)

Fall 2005

PH2200

Exam II

```
PH2200
```

14) A particle with a charge +Q is inside a spherical Gaussian surface, and three other charges (one 14) with a charge +Q and two with a charge -Q) are outside the Gaussian surface, as shown below.

The net electric flux through the surface is

- A) less than zero (flowing into the sphere).
- B) equal to zero.
- C) greater than zero (flowing out of the sphere).

15)	An extensive sheet of a conductor carries a charge density of $4.0 \mu\text{C}/\text{mm}^2$. What is the electric field strength 6.0 mm from the conductor?				15)	-
	A) $7.5 \times 10^{10} \text{ N/C}$	B) $4.5 \times 10^5 \text{ N/C}$	C) 4.5 x 10 ¹¹ N/C	D) 4.1 x 106 N/C		
16)	An electron was accelerat speed?	ed from rest through a p	potential difference of 180	00 V. What is its	16)	-
	A) 2.5 x 107 m/s	B) 1.2 x 10 ⁷ m/s	C) 1.7 x 10 ⁷ m/s	D) 2.1 x 107 m/s		
 17) A charge of 8.0 × 10⁻⁶ µC is located inside a sphere. What is the flux through the sphere? A) 0.23π N•m²/C B) It cannot be determined if the radius is unknown. C) 0.90 N•m²/C D) 71 N•m²/C 				17)	_	
18)	Consider two spheres, each than Sphere #2. The sphere	ch containing the same r res are very far apart fro	net charge +Q. Sphere #1 om each other. If the volta	l has a larger radius age is zero at infinity,	18)	-

A) the voltage on the surface of sphere #1 is lower than that of sphere #2.

B) the voltage on the surface of sphere #1 is equal to that of sphere #2.

C) the voltage on the surface of sphere #1 is higher than that of sphere #2.

19) Four protons and four electrons are arranged as shown. A 3-dimensional surface encloses them. What is the value of flux Φ through the surface?

A) 0.38 N•m²/C C) 0.72 N•m²/C

D) 6.4 x 10⁻¹⁹ N•m²/C

B) $0 \text{ N} \cdot \text{m}^2/\text{C}$

19)

20)

- 20) A parallel plate capacitor contains a positively charged plate on the left, and a negatively charged plate on the right. An electron in between the plates is moving to the right. Which statement is true?
 - A) The potential energy of the electron is decreasing and it is moving to a region having a higher potential.
 - B) The potential energy of the electron is decreasing and it is moving to a region having a lower potential.
 - C) The potential energy of the electron is increasing and it is moving to a region having a lower potential.
 - D) The potential energy of the electron is increasing and it is moving to a region having a higher potential.
- 21) A point-charge particle with a charge *Q* is inside a Gaussian cube (but not necessarily in the center). The net electric flux through the Gaussian surface of the cube is
 - A) zero.
 - B) Q/e_0
 - C) impossible to determine without doing a complicated surface integral.
- 22) A flat 1.0 m² surface is vertical at x = 2.0 m and parallel to the *yz*-plane. What is the flux 22) _____ through the surface if it is located in a uniform electric field given by

 $\vec{E} = 29.0 \,\hat{\mathbf{h}} + 42.0 \,\hat{\mathbf{j}} + 62.0 \,\hat{\mathbf{k}} \,\,\text{N/C?}$ A) 29 N·m²/C B) 100 N·m²/C C) 62 N·m²/C D) 42 N·m²/C

5

PH2200

23) The figure shows an arrangement of two Q = -1.5 nC charges each separated by 5.0 mm from a 23) proton ($m_p = 1.67 \times 10^{-27}$ kg, $e = 1.60 \times 10^{-19}$ C). If the two Q = -1.5 nC charges are held fixed at their locations and the proton is set into motion, what is the escape speed of the proton?

24) Four dipoles, each consisting of two charges $\pm 5.0 \,\mu$ C, are located in the *xy*-plane 3.0 mm from the origin, as shown. What is the flux through the sphere?

24)

	A) 4.5 x 10 ⁶ N•m ² /C		B) 2.3 x 106 N•m2	/C		
	C) $5.6 \times 10^5 \text{N} \cdot \text{m}^2/\text{C}$		D) 0 N•m ² /C			
25)	What is the electric field strength if the flux through a 2.0 m by 1.0 m rectangular surface is 800.0 N•m ² /C, if the electric field is uniform, and if the plane of the surface is at an angle of $\pi/3$ radians with respect to the direction of the field?				25) _	
	A) 400 N/C	B) 460 N/C	C) 200 N/C	D) 800 N/C		
26)	The density of conductio an aluminum conductor 35.0 mA current flows th	n electrons in aluminu that has a 3.0 μm by 4. rough the conductor?	m is 2.1 x 10 ²⁹ m ⁻³ . W 0 μm rectangular cross	/hat is the drift velocity in section and when a	26) _	

A) 0.087 m/s	B) 0.054 m/s	C) 0.22 m/s	D) 0.14 m/s
--------------	--------------	-------------	-------------

PH2200

- 27) Consider two spheres, each containing the same net charge +Q. Sphere #1 has a larger radius27) than Sphere #2. The spheres are very far apart from each other. If the voltage is zero at infinity, how do the voltage evaluated a distance *D* away from the center of sphere #1 compare to the voltage evaluated the same distance *D* away from the center of sphere #2?
 - A) The voltage near sphere #1 is greater.
 - B) The voltages are equal.
 - C) The voltage near sphere #2 is greater.
- 28) A Gaussian pillbox is situated inside a parallel plate capacitor (with one plate positively charged and one plate negatively charged), as shown below.

+Q

The net electric flux through the pillbox is A) into the pillbox. B) zero.

C) out of the pillbox.

28)

- 29) A piece of metal has a resistivity of 2.5 x $10^{-14} \Omega \cdot m$. What is the conductivity of the piece of 29) metal? A) 6.4 x 10-6 Ω-1 • m-1 B) $4.0 \ge 10^{-33} \Omega^{-1} \cdot m^{-1}$ C) $6.4 \times 10^{32} \Omega^{-1} \cdot m^{-1}$ D) $4.0 \times 10^{13} \Omega^{-1} \cdot m^{-1}$ 30) The current density in a 2.6 μ m thick × 75 μ m wide gold long film is 750,000 A/m². The current 30) flows along the length of the film. What is the current in the film? A) 5.1 μA C) 4.2 mA B) 150 μA D) 2.6 x 1016 A Solve the problem. (The value of k is 9.0 x 10^9 N•m²/C².) 31) A 6.0 μ C point charge and a 10.0 μ C point charge are initially infinitely far apart. How much 31) work does it take to bring the 6.0 μ C point charge to x = 3.0 mm, y = 0.0 mm and the 10.0 μ C point charge to x = -3.0 mm, y = 0.0 mm?
 - A) 90 J B) 15 J C) 60 J D) 180 J

Answer Key Testname: PH2200-EX2-F05.TST

1) A 2) B

- 3) D
- 4) B
- 5) D
- 6) B
- 7) A 8) C
- 9) D
- 10) A
- 10) II 11) B
- 12) B
- 13) D
- 14) C
- 15) C
- 16) A 17) C
- 17) C 18) A
- 19) B
- 20) C
- 21) B
- 22) A
- 23) D
- 24) B
- 25) B
- 26) A
- 27) B
- 28) B 29) D
- 30) B
- 31) A