For problem 3.24 part (a) :

First, use the same trick we used for acceleration. That is,

$$
\ddot{x}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right) \Rightarrow \ddot{\theta}=\frac{d}{d \theta}\left(\frac{1}{2} \dot{\theta}^{2}\right)
$$

and integrate the equation from θ_{0} to θ to get

$$
\dot{\theta}^{2}=2\left(\cos \theta-\cos \theta_{0}\right)
$$

or, taking the square root (only + matters) and rearranging

$$
d t=\frac{d \theta}{\left(2\left(\cos \theta-\cos \theta_{0}\right)\right)^{1 / 2}}
$$

Now integrate this from 0 to θ_{0} to get $1 / 4$-th of the period

$$
\frac{T}{4}=\int_{0}^{\theta_{0}} \frac{d \theta}{\left(2\left(\cos \theta-\cos \theta_{0}\right)\right)^{1 / 2}}
$$

and to get this into the form shown, you need to make the rather non-obvious substitutions

$$
\alpha=\sin ^{2}\left(\frac{\theta_{0}}{2}\right) \quad ; \quad \cos \theta=1-2 \alpha^{2} \sin ^{2} \phi
$$

from which you can show that

$$
\begin{aligned}
& \cos \theta-\cos \theta_{0}=2 \alpha^{2} \cos ^{2} \phi \\
& \sin \theta=2 \alpha \sin \phi\left(1-\alpha^{2} \sin ^{2} \phi\right)^{1 / 2}
\end{aligned}
$$

and $d \phi$ in terms of $d \theta$ is found from the second of these. Making this substitution, you get the integral shown. This integral is one type of "Elliptic Integral."

