PH3111 Problems - Hamiltonian

1. Prob. 10.28
2. Prob. 10.29
3. Consider two (continuous) functions of generalized coordinates q_{k} and corresponding momenta, p_{k}, for example $g\left(q_{k} p_{k}\right)$ and $h\left(q_{k}, p_{k}\right)$. The "Poisson Bracket" is defined by

$$
[g, h] \equiv \sum_{k}\left(\frac{\partial g}{\partial q_{k}} \frac{\partial h}{\partial p_{k}}-\frac{\partial g}{\partial p_{k}} \frac{\partial h}{\partial q_{k}}\right)
$$

Show that:
(a) $\frac{d g}{d t}=[g, H]+\frac{\partial g}{\partial t}$
(b) $\left[p_{i}, p_{j}\right]=\left[q_{i}, q_{j}\right]=0$
(c) $\left[q_{i}, p_{j}\right]=\delta_{i j}$
where H is the Hamiltonian and $\delta_{\mathrm{ij}}=1$ if $i=j$ and is zero otherwise. (Hint: if you are spending a lot of time on these, you are doing them wrong!)

Notes:

i. If $[g, h]=0$, then $[g, h]=[h, g]$ and we say that "g and h commute" (for this operation).
ii. If $[g, h]=1$, then g and h are said to be "canonically conjugate."
iii. (a) implies that if the quantity represented by g is not an explicit function of time, then it will be a constant of the motion as long as $[g, H]=0$, that is, if g and H commute. (Notice that H may be a function of time!)
iv. (a) can be used with $g=p_{k}$ and with $g=q_{k}$, along with the fact that our coordinates are not explicit functions of time, to show that

$$
\dot{q}_{j}=\left[q_{j}, H\right], \quad \dot{p}_{j}=\left[p_{j}, H\right]
$$

