Concepts of Motion

average speed $=\frac{\text { distance traveled }}{\text { time interval spent traveling }}$
$\Delta \vec{r}=\vec{r}_{\mathrm{f}}-\vec{r}_{\mathrm{i}}$
$\vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t}$
$\vec{a}_{\mathrm{avg}}=\frac{\Delta \vec{v}}{\Delta t}$

Kinematics: The Mathematics of Motion

For Motion in a Straight Line:
$v_{s}=\frac{d s}{d t}=$ slope of position-time graph
$a_{s}=\frac{d v_{s}}{d t}=$ slope of velocity-time graph
$s_{\mathrm{f}}=s_{\mathrm{i}}+\int_{t_{\mathrm{i}}}^{t_{\mathrm{i}}} v_{s} d t=s_{\mathrm{i}}+\left\{\begin{array}{l}\text { area under velocity curve } \\ \text { from } t_{\mathrm{i}} \text { to } t_{\mathrm{f}}\end{array}\right.$
$v_{\mathrm{fs}}=v_{\mathrm{is}}+\int_{\mathrm{t}_{\mathrm{i}}}^{t_{\mathrm{f}}} a_{s} d t=v_{\mathrm{is}}+\left\{\begin{array}{l}\text { area under acceleration curve } \\ \text { from } t_{\mathrm{i}} \text { to } t_{\mathrm{f}}\end{array}\right.$
Uniform Motion:

$$
s_{\mathrm{f}}=s_{\mathrm{i}}+v_{s} \Delta t
$$

Uniformly Accelerated Motion:

$$
\begin{aligned}
& v_{\mathrm{fs}}=v_{\mathrm{is}}+a_{\mathrm{s}} \Delta t \\
& s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{is}} \Delta t+\frac{1}{2} a_{s}(\Delta t)^{2} \\
& v_{\mathrm{fs}}{ }^{2}=v_{\mathrm{is}}{ }^{2}+2 a_{s} \Delta s
\end{aligned}
$$

Motion on an Inclined Plane : $a_{s}= \pm g \sin \theta$

Vectors and Coordinate Systems

$\vec{A}=\vec{A}_{x}+\vec{A}_{y}=A_{x} \hat{i}+A_{y} \hat{j}$
In the figure above:
$A_{x}=A \cos \theta$
$A_{y}=A \sin \theta$
$A=\sqrt{A_{x}^{2}+A_{y}^{2}} \quad \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$

Force and Motion

$\vec{a}=\frac{1}{m} \vec{F}_{\text {net }}$
where $\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots$

Dynamics I: Motion Along a Line

$\vec{F}_{\text {net }}=\sum_{i} \vec{F}_{i}=m \vec{a}$
A Model for Friction :
Static: $\quad \vec{f}_{\mathrm{s}} \leq\left(\mu_{\mathrm{s}} n\right.$, direction as necessary to prevent motion $)$
Kinetic: $\vec{f}_{\mathrm{k}}=\left(\mu_{\mathrm{k}} n\right.$, direction opposite the motion $)$
Rolling : $\vec{f}_{\mathrm{r}}=\left(\mu_{\mathrm{r}} n\right.$, direction opposite the motion $)$
Drag: $\vec{D} \approx\left(\frac{1}{4} A v^{2}\right.$, direction opposite the motion $)$

Dynamics II: Motion in a Plane

$$
\begin{aligned}
& \vec{r}=x \hat{i}+y \hat{j} \\
& \vec{v}=\frac{d \vec{r}}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}=v_{x} \hat{i}+v_{y} \hat{j} \\
& \vec{a}=\frac{d \vec{v}}{d t}=\frac{d v_{x}}{d t} \hat{i}+\frac{d v_{y}}{d t} \hat{j}=a_{x} \hat{i}+a_{y} \hat{j} \\
& \left(F_{\text {net }}\right)_{x}=\sum F_{x}=m a_{x} \\
& \left(F_{\text {net }}\right)_{y}=\sum F_{y}=m a_{y}
\end{aligned}
$$

Constant Acceleration :

$$
\begin{array}{ll}
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{ix}} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} & y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{iy}} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
v_{\mathrm{fx}}=v_{\mathrm{ix}}+a_{x} \Delta t & v_{\mathrm{fy}}=v_{\mathrm{iy}}+a_{y} \Delta t
\end{array}
$$

Projectile Motion :

$$
\begin{array}{ll}
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{ix}} \Delta t & y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{i} y} \Delta t-\frac{1}{2} g(\Delta t)^{2} \\
v_{\mathrm{fx}}=v_{\mathrm{ix}}=\text { constant } & v_{\mathrm{fy}}=v_{\mathrm{iy}}-g \Delta t \\
& v_{\mathrm{fy}}^{2}=v_{\mathrm{iy}}^{2}-2 g\left(y_{\mathrm{f}}-y_{\mathrm{i}}\right)
\end{array}
$$

Relative Motion:

$$
\begin{gathered}
\vec{r}=\vec{r}^{\prime}+\vec{V} t \\
x=x^{\prime}+V_{x} t \\
y=y^{\prime}+V_{y} t \\
\vec{v}=\vec{v}^{\prime}+\vec{V} \\
v_{x}=v_{x}^{\prime}+V_{x} \\
v_{y}=v_{y}^{\prime}+V_{y} \\
\vec{a}=\vec{a}^{\prime}
\end{gathered}
$$

Dynamics III: Motion in a Circle

$\theta=\frac{s}{r}$
average angular velocity $=\frac{\Delta \theta}{\Delta t}$
$\omega=\frac{d \theta}{d t}$
$v_{t}=\omega r$
Uniform Circular Motion :

$$
\begin{aligned}
& v=\frac{2 \pi r}{T} \quad \omega=\frac{2 \pi \mathrm{rad}}{T} \\
& \theta_{\mathrm{f}}=\theta_{\mathrm{i}}+\omega \Delta t \\
& a_{r}=\frac{v^{2}}{r}=\omega^{2} r
\end{aligned}
$$

Nonuniform Circular Motion (constant a_{t}):

$$
\begin{aligned}
& a_{\mathrm{t}}=\frac{d v}{d t} \\
& \theta_{\mathrm{f}}=\theta_{\mathrm{i}}+\omega_{\mathrm{i}} \Delta t+\frac{a_{t}}{2 r}(\Delta t)^{2} \\
& \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\frac{a_{t}}{r} \Delta t
\end{aligned}
$$

Energy

$K=\frac{1}{2} m v^{2}$
$U_{\mathrm{g}}=m g y$
$E_{\text {mech }}=K+U$
$K_{\mathrm{f}}+U_{\mathrm{f}}=K_{\mathrm{i}}+U_{\mathrm{i}}$ (conservation of mechanical energy)
$\left(F_{\text {sp }}\right)_{s}=-k \Delta s \quad U_{s}=\frac{1}{2} k(\Delta s)^{2}$
Perfectly Elastic 1-D Collisions (m_{2} initially at rest):

$$
\left(v_{\mathrm{fx}}\right)_{1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\left(v_{\mathrm{ix}}\right)_{1} \quad\left(v_{\mathrm{fx}}\right)_{2}=\frac{2 m_{1}}{m_{1}+m_{2}}\left(v_{\mathrm{ix}}\right)_{1}
$$

Work

$W=\left\{\begin{array}{l}\int_{s_{i}}^{s_{\mathrm{t}}} F_{s} d s=\text { area under the force-position curve } \\ \vec{F} \cdot \Delta \vec{r}=F \Delta r \cos \theta \quad \text { if } \vec{F} \text { is a constant force }\end{array}\right.$
$\Delta K=W_{\text {net }}=W_{\mathrm{c}}+W_{\text {diss }}+W_{\text {ext }}$ (work-kinetic energy theorem)
$\Delta U=U_{\mathrm{f}}-U_{\mathrm{i}}=-W_{\mathrm{c}}(\mathrm{i} \rightarrow \mathrm{f})$
$F_{s}=-\frac{d U}{d s}$

$$
\left(F_{\text {net }}\right)_{r}=\sum F_{r}=m a_{r}=\frac{m v^{2}}{r}=m \omega^{2} r
$$

$E_{\mathrm{th}}=K_{\text {micro }}+U_{\text {micro }}$
$\Delta E_{\text {th }}=-W_{\text {diss }}$

$$
\left(F_{\text {net }}\right)_{t}=\sum F_{t}= \begin{cases}0 & \text { uniform motion } \\ m a_{t} & \text { nonuniform motion }\end{cases}
$$

$E_{\text {sys }}=K+U+E_{\text {th }}$
$K_{\mathrm{f}}+U_{\mathrm{f}}+\Delta E_{\mathrm{th}}=K_{\mathrm{i}}+U_{\mathrm{i}}+W_{\mathrm{ext}}$

$$
\left(F_{\text {net }}\right)_{z}=\sum F_{z}=0
$$

$P=\frac{d E_{\mathrm{sys}}}{d t} \quad P=\frac{d W}{d t}=\vec{F} \cdot \vec{v}=F v \cos \theta$

Newton's Theory of Gravity

Newton's Third Law

$\vec{F}_{\text {A on } \mathrm{B}}=-\vec{F}_{\mathrm{BonA}}$

Impulse and Momentum

$\vec{p}=m \vec{v}$
$J_{x}=\left\{\begin{array}{l}\int_{t_{i}}^{t_{t}} F_{x}(t) d t=\text { area under force curve } \\ F_{\text {avg }} \Delta t\end{array}\right.$
$\Delta p_{x}=J_{x}$ (impulse-momentum theorem)
$\vec{P}=\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\ldots$
$\vec{P}_{\mathrm{f}}=\vec{P}_{\mathrm{i}}$ (conservation of momentum)
$F_{M \text { on } m}=F_{m \text { on } M}=\frac{G M m}{r^{2}}$
$g_{\text {surface }}=\frac{G M}{R^{2}}$
Circular Orbit: $v=\sqrt{\frac{G M}{r}} T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3}$

Physical Constants

$$
\begin{aligned}
& g=9.80 \mathrm{~m} / \mathrm{s}^{2} \\
& G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
& M_{\text {earth }}=5.98 \times 10^{24} \mathrm{~kg} \\
& R_{\text {earth }}=6.37 \times 10^{6} \mathrm{~m}
\end{aligned}
$$

