PH4210 HW 1

1. (a) Show that the determinant of matrix M is give by: $\operatorname{det} M=\varepsilon_{i j k} M_{i 1} M_{j 2} M_{k 3}$.
(b) Show that $\varepsilon_{i j k} M_{i m} M_{j n} M_{k r}=\varepsilon_{m n r} \varepsilon_{i j k} M_{i 1} M_{j 2} M_{k 3}$.
(c) Prove that the determinant of an orthogonal matrix R is $1(\operatorname{det} \mathrm{R}=1)$.
(d) Now, show that $\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}$ is a vector under an orthonormal coordinate transformation $\overrightarrow{\mathrm{A}} \rightarrow \overrightarrow{\mathrm{A}}^{\prime}=R \overrightarrow{\mathrm{~A}}, \quad \overrightarrow{\mathrm{~B}} \rightarrow \overrightarrow{\mathrm{~B}}^{\prime}=R \overrightarrow{\mathrm{~B}}$. That is, show that $\overrightarrow{\mathrm{A}}^{\prime} \times \overrightarrow{\mathrm{B}}^{\prime}=R(\overrightarrow{\mathrm{~A}} \times \overrightarrow{\mathrm{B}})$. The book claims this is so on page 14 , but equation 2.17 is no proof. Hint: Start with $\overrightarrow{\mathrm{A}}^{\prime} \times \overrightarrow{\mathrm{B}}^{\prime}$ and substitute in the transformations. Insert a judicious choice of the identity matrix in the form $\delta_{p q}=R_{p t} R_{t q}^{T}$ (you'll have to figure out the subscripts). Then use the identities in (a), (b) and (c) above.
2. Show that $\vec{\nabla}(\nabla \cdot \vec{V})$ and $\nabla^{2} \vec{V}$ are fundamentally different by expressing these quantities in suffix notation.
3. Prove that $(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=(\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D})-(\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C})$.
4. Pollack \& Stump 2.6
5. Pollack \& Stump 2.8
6. Pollack \& Stump 2.9
7. Pollack \& Stump 2.10
8. Pollack \& Stump 2.11
9. Pollack \& Stump 2.12
10. Pollack \& Stump 2.13
