1. Pollack \& Stump 3.4
2. Pollack \& Stump 3.5.
(a) First do this by using eqn. 3.16.
(b) Repeat the calculation by first computing the potential V along the z -axis and then take an appropriate derivative.
(c) Could you show that E_{x} and E_{y} are zero along the z -axis using V computed in part (b)? If you can, do so. If you cannot, then explain why you cannot.
3. Pollack \& Stump 3.5, but instead, try this for $\mathrm{z}<\ell$ and see what happens at $\mathrm{z}=0$. What happens in eqn 3.18 when r goes to zero? You can integrate $d E$ or compute V in order to find the field for $\mathrm{z}<\ell$.
4. Use Gauss's law to find the electric field inside of an infinitely long cylinder of radius a with uniform charge density ρ. Symmetry arguments should be explicit.
5. (a) Pollack \& Stump 3.17 (a)
(b) Use integration by parts to show that $x \frac{d}{d x} \delta(x)=-\delta(x)$.
6. Pollack \& Stump 3.18
7. Pollack \& Stump 3.23. Note: There are many ways to do this- think first about which method is simplest.
8. Pollack \& Stump 3.26
9. Pollack \& Stump 3.30
10. Pollack \& Stump 3.43
