PH4210 HW5

1. Pollack \& Stump 5.10 parts (a), (c), (d)
2. Consider the Dirichlet B.C. example of two hemispheres, the top at V_{o} and bottom at $-V_{o}$ (in class and in Pollack \& Stump example 3 in Ch. 5) as described in equation 5.60.
a. Derive eqn. 5.67 for the surface charge density.
b. Integrate eqn. 5.67 to find the total charge Q on the upper hemisphere and then an expression for the capacitance C.
3. Consider again the Newumann B.C. example in Pollack \& Stump Ch. 5 example 4. Derive eqn. 5.71.
4. Example 9 of Pollack \& Stump Ch. 3 gives the potential on the axis of symmetry of a uniformly charged disk of radius a and charge density σ.
a. Expand $\mathrm{V}(\mathrm{z})$ for $\mathrm{z}>a$. Use this result to find $\mathrm{V}(\mathrm{r}, \theta)$ for $\mathrm{r}>a$ in terms of Legendre polynomials.
b. Expand $\mathrm{V}(\mathrm{z})$ for $\mathrm{z}<a$. Use this result to find $\mathrm{V}(\mathrm{r}, \theta)$ for $\mathrm{r}<a$ in terms of Legendre polynomials.
c. What is going on for $r=a$?
