PH4210 Short Exercises

Fall 2007

Due Monday 11/5
Derive equation 5.51 in the book by inserting Eqn. 5.50 into 5.49.

EXAM REDMPTION: (DUE 10/29)
Rework any missed problems on the exam for 50% credit. Turn in your exam booklets and rework in class on Monday 10/29.

HW Extra Credit: DUE Monday 10/29

Using Cartesian or Cylindrical coordinates, find the electric field for $\mathrm{z}>0$, and the surface charge density for a conductor on the $x-y$ plane with a charge $+q$ a distance d above the conductor. Then integrate the charge density to show the net induced charge on the surface of the conductor is -q . Note: The answers are in the book in section 4.4.2- you need to show the work!

Extra Credit; no deadline:

Show that $\vec{\nabla} \frac{1}{r}=\frac{-\hat{r}}{r^{2}}$, where $\vec{r}=\vec{r}-\vec{r}$ ' using spherical coordinates.

Due Friday 10/05

Consider an infinite sheet of charge on the $x-y$ plane, with surface charge density σ. Give symmetry arguments to simplify the form of

$$
\vec{E}(x, y, z)=E_{x}(x, y, z) \hat{x}+E_{y}(x, y, z) \hat{y}+E_{z}(x, y, z) \hat{z}
$$

Such symmetry arguments should involve making some kind of "operation" like rotation, reflection, translation taking advantage of the physical symmetry of the charge distribution, and then making a conclusion about the electric field in terms of its components, or in terms of how any of its components may or may not vary with x, y, z.

Due Monday 9/24

Show that $\vec{\nabla} \frac{1}{r}=\frac{-\bar{r}}{r^{2}}$, where $\vec{r}=\vec{r}-\vec{r}^{\prime}$ in the notation from class; or, using the text's notation, $\vec{\nabla} \frac{1}{r}=\frac{-\hat{r}}{r^{2}}$, where $r=\vec{x}-\vec{x}^{\prime}$.

Due Friday $9 / 14$

1. If α, β are scalars and A_{i}, B_{i} are vectors, show that $C_{i}=\alpha A_{i}+\beta B_{i}$ is also a vector by showing C_{i} transforms correctly under an orthonormal coordinate transformation $\overrightarrow{\mathrm{A}} \rightarrow \overrightarrow{\mathrm{A}}^{\prime}=R \overrightarrow{\mathrm{~A}}, \quad \overrightarrow{\mathrm{~B}} \rightarrow \overrightarrow{\mathrm{~B}}^{\prime}=R \overrightarrow{\mathrm{~B}}$.
2. Starting from the observation that

$$
\varepsilon_{i j k} \varepsilon_{k l m}=\mathrm{A} \delta_{i l} \delta_{j m}+\mathrm{B} \delta_{i m} \delta_{j l}+\mathrm{C} \delta_{i j} \delta_{l m},
$$

show that $\mathrm{C}=0, \mathrm{~A}=1$, and $\mathrm{B}=-1$ so that

$$
\varepsilon_{i j k} \varepsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l},
$$

