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In response to comments by Borovoi [J. Opt. Soc. Am. A 19, 2517 (2002)] on my earlier work [J. Opt. Soc. Am.
A 18, 1929 (2001)], the kinetic approach to extinction is compared with the traditional radiative transfer for-
malism and advantages of the former are illustrated with concrete examples. It is pointed out that the basic
differential equation dI(l) 5 2csI(l)dl already implies perfect randomness (absence of correlations) on small
scales. One of the consequences is that the extinction of radiation in a negatively correlated random medium
cannot be treated within the traditional framework. This limits the usefulness of the Jensen inequality.
Also, simple counterexamples to theorems given in the first reference above and in Dokl. Akad. Nauk SSSR,
276, 1374 (1984) are presented. © 2002 Optical Society of America

OCIS codes: 030.6600, 030.5290, 030.5620, 010.1290, 000.5490.
I welcome the comments1 on my recent work2 and the op-
portunity to discuss the topic in more depth. Also, I am
pleased to see that the author of Ref. 1 was able to use the
formalism he developed earlier3 to rederive some of the
results in Ref. 2.4 The approach of Ref. 1 is based on the
continuous description of a random medium and uses
tools such as the Jensen inequality (which was mentioned
in the very first paragraph of Ref. 2 along with the refer-
ences to prior work).7–9,10 It should be noted that the al-
gebraic extinction of Ref. 2 is derived in Ref. 1 in a par-
ticularly simple manner by means of Laplace transform
(see also Ref. 7, pp. 429–432 for practical difficulties with
that approach). However, the approach developed in Ref.
2 is not merely another point of view and derivation of
nonexponential extinction (or transmission) but is more
fundamental and yields results not attainable by the ra-
diative transfer method used in all of the references
above. The limitation of the traditional approach can be
traced back to the very first step of writing the basic dif-
ferential equation, as we shall see shortly. The essential
difference between the two approaches is also illustrated
by simple counterexamples to theorems stated in Refs. 1
and 3, as is discussed next.

To that end, recall from Ref. 2 that ‘‘The examination
proceeds at a fundamental level, a single particle at a
time, in the spirit of classical kinetic theory. Neither spe-
cific radiative transfer formalism nor the concept of opti-
cal depth is used in our approach’’ (p. 1929). This is in
sharp contrast to the traditional radiative transfer ap-
proach, which, from the outset, employs the notion of the
optical depth t 5 csl, where c, s, and l denote concentra-
tion, obstacle cross section, and propagation distance, re-
spectively. The concentration, for example, is viewed in
Ref. 1 as either a random function c(l) along the radiation
path or as a random variable with the probability density
function p(c). The author of Ref. 1 found the kinetic
theory arguments used in Ref. 2 complicated and unreli-
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able, referring to them as ‘‘sophistical speculations’’ (p.
2517). Therefore, in order to distill the essential differ-
ence between the two approaches, I will confine the dis-
cussion to the simplest examples examined by means of
elementary geometry and probability. As in Ref. 2, the
validity of the geometrical optics approximation and per-
fect absorption (no scattering) will be assumed through-
out.

To begin, recall a simple and well-known argument
used in Ref. 2 concerning the probability of transmission
through a series of thin layers. The layers are so thin
that no obstacle is in the shadow of another obstacle
within the layer. The probability of transmission is then
given by

ptr 5 ~1 2 bdx1!~1 2 bdx2!¯~1 2 bdxm!, (1)

where b 5 cs, and the total probability is a product be-
cause layers are assumed entirely independent of one an-
other. This independence leads directly to exponential
decay. But what happens if the layers are not entirely in-
dependent of each other? Of special interest is the case
of correlation length comparable to the width of the layer
dx. Consider then this question in the language of the
traditional approach, i.e., the ‘‘trivial’’ differential equa-
tion (terminology of Ref. 1),

dI~l ! 5 2csI~l !dl, (2)

and note the following: The flux of parallel light rays I(l)
is assumed to be a continuous function of the position l
along the ray and perfectly constant everywhere in the
plane perpendicular to the ray. However, the uniformity
of the energy flux over the beam cross section is there only
at the entrance into the medium (l 5 0) but not after the
light has traveled a certain distance. Indeed, at nonzero
penetration distance, within the beam cross section, there
appear shadows cast by previously encountered particles,
while other parts remain illuminated. In other words,
the beam cross section is ‘‘checkered.’’ Therefore, if we em-
2002 Optical Society of America
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ploy the notion of the beam-cross-section-averaged energy
flux I(l), writing the differential equation [Eq. (2)] tacitly
assumes that (i) there is no overlap of obstacles within the
differential layer dl and that (ii) particles within dl are
positioned in a perfectly random manner (they show no
preference toward either the dark or the illuminated re-
gions).

It is assumption (ii) that is central to this response.
This assumption of perfectly random locations is precisely
the assumption of the Poisson process with respect to the
number of obstacles per volume as a random variable.
Hence no correlations among obstacle positions are al-
lowed. In other words, consecutive layers or ‘‘slices’’ are
completely independent of each other.12 Ordered (lattice)
arrays obviously violate the requirement of complete in-
dependence, and so do many partially ordered systems.

In order to focus on the origin of the exponential
attenuation—an interplay of randomness in obstacle loca-
tion and the possibility of an obstacle shadow
overlap—we find it instructive to begin with the simplest
(albeit somewhat artificial) example. Consider a series of
parallel ‘‘checkerboard’’ screens such as depicted in Fig. 1
(such models were used to analyze transmittance of silver
halide films14). Furthermore, require that the grains be-
longing to different screens never overlap; that is, they
can be placed randomly within a given screen as long as
the spot is not in the shadow cast by any of the previous
screens. Then, within unit optical depth (t 5 csl 5 1)
all incident light is extinguished. This linear extinction
provides a simple counterexample to the statement in
Ref. 1 that exponential extinction always results in the
far-field limit. Furthermore, such strong negative corre-
lations are not critical to the violation of exponential ex-
tinction, because the argument is really about the possi-
bility of an eventual ‘‘perfect blockage.’’ For example, one
can place the absorbers anywhere in the checkerboard
with, say, binomial probability, and still the complete ex-
tinction eventually occurs at some finite distance.

More realistic examples of spherical obstacles with pos-
sibly overlapping shadows are readily constructed, as is

Fig. 1. Simple example of a distribution that causes linear
(faster than exponential) extinction. Black squares indicate
perfect absorbers. The absorbers are distributed completely at
random, except for the constraint that no two obstacles can be
aligned in the propagation direction (thus introducing correla-
tions by forcing new absorbers to ‘‘avoid shadows’’). While this
distribution is anisotropic, one can readily construct more-
realistic and isotropic distributions that result in extinction rates
between the linear regime (a lower limit) and the exponential re-
gime (e.g., see Fig. 3).
illustrated in Fig. 2. The perfectly random case (Poisson
process) corresponds to the middle column of the figure,
and left and right columns correspond to negative and
positively correlated random media, respectively. [Ex-
amples of negative correlations are sedimentation (par-
ticles slowly settling in a laminar flow15), electrostatic re-
pulsion, and a fermion gas]. The first row is a schematic
depiction of the pair-correlation function defined in Ref. 2
via

P~1, 2 ! 5 k̄2dV1dV2@1 1 h~l !#, (3)

where k̄dV is the probability of finding a particle in dV,
h(l) is the pair-correlation function, and l is the separa-
tion distance between the two elementary volumes (see
Ref. 2 for more details). Thus the fact that h(l0)
5 20.2 rather than h(l0) 5 0 indicates that particles
are less likely to be a distance l0 apart than in a perfectly
random distribution. The corresponding realizations of
obstacle distributions are shown in the second row of Fig.
2 (see Ref. 16 for details), and ‘‘time series’’ of photon ab-
sorption events (as observers move along the ‘‘cloud’’
layer) are shown in the third row. The fourth row depicts
probability distributions for each of the three kinds of me-
dia, the essential element here is the transmission prob-
ability (zero absorption events). This is the main idea of
Refs. 2 and 16 (see also Fig. 2 caption).

In comparing the reasoning of Fig. 2 with the discus-
sion in Ref. 1, it is essential to realize that all three dis-
tributions in Fig. 2 have the same concentration and ob-
stacle characteristics. In contrast, the ‘‘trivial’’
differential equation in Ref. 1 implies that, at least on
small scale, the medium is perfectly random (middle col-
umn). The very notion of the concentration distribution
p(c) or a random function c(l) implies a wide separation
of three scales: interparticle distance, the scale on which
concentration is defined, and the characteristic scale over
which concentration is varied (e.g., see Fig. 1.3 of Ref. 17,
p. 7). Such a superposition of locally Poisson processes is
often called a Poisson mixture. Thus, if the relevant
length scales are indeed widely separated, the traditional
approach is able to describe some of the positively corre-
lated media (right column of Fig. 2). However, the scale-
separation requirement precludes the formalism in Refs.
1 and 3 from resolving any random medium whose corre-
lation distance is comparable to the interparticle dis-
tance. Furthermore, the preceding observation renders
the Jensen inequality inappropriate insofar as the optical
depth t 5 csl is involved.

In particular, the reader should note that any nega-
tively correlated media (left, second row, Fig. 2) cannot be
described as a superposition of locally Poisson processes
and therefore falls outside the approach in Ref. 1 and the
radiative transfer approach, in general. This is a point of
fundamental importance for understanding the differ-
ences between the approaches of Ref. 2 and Ref. 1. Per-
haps the easiest way to see it is from the correlation-
fluctuation theorem for the variance of a particle count in
a volume [Eq. (9) of Ref. 2), which reads

~dK !2 5 K̄ 1 h̄K̄2, (4)
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Fig. 2. Schematic depiction of the chain of reasoning in Refs. 2 and 16. The left column shows that a random distribution of absorbers
more uniform than Poisson (e.g., electrostatic or hydrodynamic repulsion) can yield superexponential extinction. Similarly, the right
column demonstrates that subexponential extinction can occur in positively correlated (clustered) media; the middle column for perfectly
random absorbers is included for reference. The first row shows a characteristic pair-correlation function that can be used to generate
corresponding distributions of absorbers. The second row (adapted from Ref. 16) shows a typical thin slice from each distribution. Note
that all three distributions have the same concentration and obstacle characteristics. The number of absorption-event series shown in
the third row can be illustrated as follows. Imagine a ‘‘neutrino’’ (a particle unaffected by the absorbers) traversing a given depth of a
distribution and counting the number of absorbers encountered. The numbers ‘‘reported’’ by different neutrinos are plotted in the third
row. The fourth row is the corresponding probability distribution. The probability of (photon) transmission through the layer is the
probability of encountering no absorbers. Again note that the mean number of encounters is the same for all three distributions (fixed
depth and concentration), so the entire argument is about the change in variance while the mean is held fixed.
where h̄ 5 V21*VhdV is the volume-averaged pair-
correlation function. This is a completely general result
that allows for sub-Poisson fluctuations when h̄ is nega-
tive. On the other hand, a superposition of locally Pois-
son processes (the right column of Fig. 3), which is implic-
itly implied throughout the treatment in Refs. 1 and 3,
results in the distribution model (see Section 4 of Ref. 2):

p~K ! 5 E
0

`

p~KuK̄ !p~K̄ !dK̄

5 E
0

` K̄K exp~2K̄ !

K!
p~K̄ !dK̄, (5)

where the vertical bar denotes conditional probability (see
Ref. 18 for more details). Here the Poisson fluctuations
in the particle number ride on top of the longer-scale con-
centration fluctuations. Recall that for conditional ran-
dom variables, variances due to independent causes sim-
ply add (e.g., Ref. 19, pp. 65–66). Thus the variance of
the Poisson mixture is enhanced beyond that of a pure
Poisson probability density function by the variance of
concentration fluctuations [the p(c) term in Ref. 1]. This
means that the second term in Eq. (4) cannot be negative.
Hence any random medium that is negatively correlated
on at least some length scale is excluded from this de-
scription. This is a rather stringent constraint. Indeed,
all obstacles have a characteristic size (;s 1/2), and most
are impenetrable. Therefore the pair correlation h(l)
must be negative unity for scales up to ;s 1/2. Thus
negative correlations are ubiquitous.20

Let us now come back to the extinction of light by the
three kinds of media in Fig. 2. On the basis of the argu-
ments of the last section in Ref. 2 entitled ‘‘Super-
Poissonian Model Yields Slower-than-Exponential At-
tenuation,’’ one might conjecture that the sub-Poissonian
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case (left column of Fig. 2) would yield faster than expo-
nential (or enhanced exponential) attenuation. Indeed,
Shaw et al.16 show that this is the case. Furthermore,
this invalidates theorems stated in Refs. 1 and 3. For
example, let us quote theorem B of Ref. 1. p. 2518; Ref. 3,
p. 1375.

‘‘A layer having a finite longitudinal size but infinite
transversality exhibits lowest longitudinal transmit-
tance in the case of the uniform distribution of scatter-
ers inside this layer. Any redistribution of the scatter-
ers in space forming transversal inhomogeneities will
result in an increase of the longitudinal transmittance
of the layer.’’

In the above quote the word ‘‘uniform’’ really refers to
the middle column of Fig. 2, and the theorem applies to
most situations involving a change from the middle col-
umn to the right one. However, as shown in Ref. 16 and
discussed above (see also Fig. 3), redistribution toward a
negatively correlated medium yields a more rapid extinc-
tion. Let us attempt a simple geometrical explanation.

Imagine light rays striking slices of equal cross section
and width and populated with equal numbers of obstacles
(second row of Fig. 2) and compare the three cases. The
negatively correlated medium has less of an overlap be-
tween obstacle shadows belonging to adjacent screens be-
cause of, say, mutual repulsion (one way of attaining
negative spatial correlations). Hence one expects a more
efficient absorption of light than that of the purely ran-
dom arrangement. Indeed, this is confirmed by detailed
Monte Carlo simulations in Ref. 16. Here we illustrate
the cumulative effects by stacking up many thin slices
(Fig. 3). The effects are striking, demonstrating faster
(slower) extinction in negatively (positively) correlated

Fig. 3. Illustration of correlation effects in ‘‘shadow overlap.’’
These are ‘‘end on’’ samples of transversally infinite distributions
of obstacles, with the propagation direction being out of the page
and toward the reader. The medium is dilute (volume fraction
less than 1024 in all three media, but the dots in the upper ‘‘thin-
slice’’ panel are larger than actual size for better visibility). Left
to right, we have a negatively correlated distribution, a perfectly
random distribution, and a positively correlated (clustered) dis-
tribution. The bottom panels are the entire distributions (318 of
the respective upper-panel slices). Despite seemingly minor vi-
sual differences among the three upper (thin) slices, the cumula-
tive anti-correlated distribution is strikingly less transparent
(absorber amount and obstacle cross section remaining equal for
the three cases). All three absorber distributions yield
intensity-versus-depth curves that begin at the same point and
have equal initial slopes: then correlations set in. Therefore at
least a transitional nonexponential regime is implied.
cases. This indicates deviations from the exponential ex-
tinction (and possibly an enhanced exponential extinction
in the far field limit, with an effective extinction cross
section).21 Figure 3 demonstrates that short-range cor-
relations may have long-range effects.

It remains to examine the range of validity of these re-
sults (e.g., algebraic extinction) in light of the comments
in Ref. 1 about the far-field limit. I think that the obser-
vation in Ref. 1 that algebraic extinction can be obtained
as a Laplace transform of the concentration probability
distribution p(c) is an interesting one (see also Ref. 7, p.
432). However, as already discussed, p(c) cannot de-
scribe negatively correlated media. Furthermore, the
large-inhomogeneity (a @ L) assumption is made in Ref.
1 to obtain the power law. However, no such assumption
is needed in the approach of Ref. 2, and neither is the p(c)
notion. Therefore the domain of validity is broader.

To be more precise and in keeping with the logic of Fig.
2, one expects convergence to the exponential extinction
regime whenever convergence to Poisson statistics occurs.
The variance equation (dK)2 5 K̄ 1 h̄K̄2 may be used to
that end. Whenever the second term becomes negligible
relative to the first and the Poisson variance is reestab-
lished, one expects the exponential regime to emerge. If
the correlation length *0

`h(l)dl is finite, then for observa-
tion distances much longer than the correlation length,
one does recover the exponential regime, in agreement
with the comments in Ref. 1. However, to the extent that
the correlation length may be much longer than the opti-
cal depth, the intermediate regime of algebraic extinction
applies to long (many optical depths) observation dis-
tances. Furthermore, the example of linear extinction in
Fig. 1 illustrates the fact that the exponential regime
might not occur in any limit, even if the correlation length
is finite. Note also that there is a vast literature on frac-
tal modeling of random media (e.g., see Ref. 8) in which
variability on all scales is assumed so that the correlation
length is infinite. Therefore the algebraic extinction re-
sults of Ref. 2 may be valid well beyond the near-field
range, contrary to the assertion in Ref. 1, with the precise
range of validity dependent on the functional form of the
pair-correlation function. Finally, the very use of the
pair-correlation function h in the last section of Ref. 2 ac-
counts for ‘‘spatial correlations along an observation path’’
(p. 1932), again contrary to the assertion in Ref. 1.
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