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Exponential extinction of incoherent radiation intensity in a random medium (sometimes referred to as the
Beer—Lambert law) arises early in the development of several branches of science and underlies much of ra-
diative transfer theory and propagation in turbid media with applications in astronomy, atmospheric science,

and oceanography.
Poisson statistics of extinction events.

We adopt a stochastic approach to exponential extinction and connect it to the underlying
We then show that when a dilute random medium is statistically ho-

mogeneous but spatially correlated, the attenuation of incoherent radiation with depth is often slower than

exponential.
ability distribution of photon extinction events.
increased. © 2001 Optical Society of America
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1. INTRODUCTION

Propagation of radiation in a random medium is a ubiq-
uitous problem, and the Beer—Lambert law of exponential
extinction is one of its basic elements. However, possible
deviations from exponential attenuation have been re-
cently explored in several studies, particularly in the con-
text of the radiative transfer equation. To the best of the
author’s knowledge, the earliest study of the effects of me-
dium heterogeneity on transmission characteristics was
that of Romanova in 1975.' In 1982, Weinman and
Harshvardhan? concluded that internal cloud geometry
was a major factor in deducing the radiative properties.
Integration over the probability distribution of optical
depths and the Jensen inequality for the exponential
function [exp(—17) = exp(—7)], where 7 is the optical
depth, were used by Stephens et al.® and Newman et al.,*
respectively, to calculate the effective transmission. A
little later, the Jensen inequality and fractal modeling of
clouds were used in Marshak et al.? to interpret the ob-
servation that spatially heterogeneous clouds transmit
more and reflect less than “equivalent” (same-water-
content) homogeneous clouds. The effects of heterogene-
ity and nonexponential transmission were also considered
by Davis et al. in Refs. 6 and 7 from the kinetic theory
point of view, relying on fractal modeling. A fractal
model was employed in Ref. 8 as well, in order to model
small-scale structure, and it was concluded that exponen-
tial extinction is modified in radiative transfer through
vegetation canopy. The related research in the field of
stochastic transport is summarized in Ref. 9. Finally, for
an example of nonexponential transmission that is due to
line-shape effects, the reader is referred to the monograph
on atmospheric radiation by Goody and Yung (Ref. 10, p.
132).

The purpose of this contribution is to examine the va-
lidity of and possible departures from exponential attenu-
ation of incoherent (no-phase) radiation propagating in a
statistically homogeneous but spatially correlated dilute
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This occurs because spatial correlations among obstacles of the medium spread out the prob-
Therefore the probability of transmission (no extinction) is

random medium. The examination proceeds at a funda-
mental level, a single particle at a time, in the spirit of
classical kinetic theory. Neither a specific radiative
transfer formalism nor the concept of optical depth is
used in the approach. This allows consideration of corre-
lation lengths comparable with the mean free path. Fur-
thermore, no assumptions of fractal behavior or any other
scale invariance are required. The concept of the pair
correlation function is employed to describe the structure
of a dilute random medium, and the notion of the Poisson
random process is used as a bridge to the Beer—Lambert
law from the stochastic viewpoint.

To distill the essence of the argument, we consider the
simplest example: a parallel beam of incoherent radia-
tion, incident normally on a slab containing a random col-
lection of obstacles. Let us also assume that the inter-
particle distances are much larger than particle size
(dilute random medium) and that when photons are ab-
sorbed, re-emission occurs at a different frequency and
does not contribute to the original beam, and that scatter-
ing is negligible compared with absorption. It would ap-
pear that, with all these simplifying assumptions, expo-
nential extinction must surely hold, but one subtlety
remains.

Our random medium is assumed to be statistically ho-
mogeneous, that is, its statistical characteristics, such as
moments, are invariant with respect to translation.
However, this still leaves the possibility of correlations in
the spatial positions of the obstacles. Let us quote from
(Ref. 11, p. 351): “The assertion that the particles of a
homogeneous isotropic body (liquid or gas) are equally
likely to be at any position in space, applies to each sepa-
rate particle on condition that all the other particles can
have arbitrary positions. This assertion certainly does
not contradict the fact that, owing to their interaction,
there must exist some correlation between the relative po-
sitions of the different particles. This means that if we
consider, say, two particles at the same time, then for a
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given position of one particle, different positions of the
other will not be equally probable.”

The question addressed in this paper is the following:
Does the correlation in the positions of obstacles affect ex-
ponential extinction? Our purpose is to show that the at-
tenuation of radiation with penetration depth into a spa-
tially correlated but statistically homogeneous dilute
random medium is often slower than exponential.

To that end, we begin by establishing the close connec-
tion between exponential extinction and Poissonian sta-
tistics in the simplest correlation-free (perfectly random)
medium. The stochastic interpretation of the Beer—
Lambert law is arrived at by regarding the number of ex-
tinction events (e.g., absorbed photons) in a given volume
as the fundamental random variable. We then proceed to
show that spatial correlations among obstacles cause de-
viations from the Poisson distribution of extinction
events. Finally, it is shown that super-Poissonian fluc-
tuations yield slower-than-exponential extinction.

To motivate the development intuitively before em-
barking on a formal treatment, perhaps it is helpful to
consider the following simple analogy. Compare the pho-
ton’s view of going through the random layer with visibil-
ity in a forest. Imagine a line of observers parallel to and
looking through a layer of sparsely populated woods.
The photon free path is analogous to the line of sight.

For the perfectly random forest (without any clumps of
trees), an exponential distribution of free paths (distribu-
tion among observers of the lengths of the lines of sight)
holds; e.g., see Ref. 12, p. 257. This exponential distribu-
tion is equivalent to the Poisson distribution of the (ran-
dom) number of obstacles per area and yields exponential
extinction. Let A denote the mean free path or average
visibility. Next, while preserving statistical homogeneity
and without changing concentration, redistribute the
trees to form patches and voids throughout the layer.
The distribution of lines of sight will change. For ex-
ample, there is now a higher probability of going through
3A because some lucky observers happen to be looking
through several aligned voids, and this is why one might
expect the attenuation with distance to be slower than ex-
ponential (more photons here than in the Poissonian case
leak through a slab of 3A). The probability of the free
path being much lower than A is also higher than in the
Poissonian case because of the patches of high concentra-
tion. Therefore the path-length distribution is broader in
the patchy case, i.e., has larger variance (the mean held
constant).

2. STOCHASTIC INTERPRETATION OF THE
BEER-LAMBERT LAW

Consider a uniform parallel incoherent photon beam of
cross-sectional area A, incident normally on an infinite
slab of a dilute random medium of depth x. The slab is
sufficiently deep to contain many randomly positioned ob-
stacles (e.g., cloud droplets). Let the number of extinc-
tion events (e.g., photons absorbed by the particles of the
medium) per unit volume and time be our fundamental
random variable. Furthermore, we assume that obstacle
positions are purely random, i.e., statistically indepen-
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dent of each other. Therefore the obstacle count per unit
volume is described by the Poisson distribution. This is
so also for the probability distribution of the extinction
events (as in kinetic theory of the classical ideal gas,
where the number of collisions satisfies Poissonian statis-
tics; e.g., see Ref. 13). In other words, the number of ex-
tinction events satisfies the following conditions: (a) Ex-
tinction by the slab represents a statistically
homogeneous (stationary) random process (that is, the
statistics are independent of the location in the slab); (b)
the probability of extinction of more than one photon in a
given width 8x is vanishingly small for sufficiently small
slab width 8x; and (c¢) extinction events in nonoverlapping
volumes are statistically independent random variables.
These three assumptions define the Poisson process; e.g.,
see Ref. 14. Therefore the number of absorbed photons
obeys the Poisson distribution:

n(x)" exp[ —n(x)]

n!

pu(x) = , (1)

where n is the random number of, say, absorbed photons
in the test volume per unit time, p,(x) is the probability
of having n photons absorbed in a given volume of a layer
of depth x, and n(x) is the mean count over many realiza-
tions as a function of the depth x into the slab. Either we
can view x as a random variable and n as a parameter or
vice versa or both. A possible question might be, for n
= 2 (e.g., doubly scattered photon or two absorption
events of a photon if a photon is reintroduced after first
absorption), What is the distribution of a random variable
x? In this study, we will adhere to the other interpreta-
tion, however, in which x (and therefore 77) are held con-
stant and the focus is on the distribution of n.

The Poisson distribution satisfies (n — 1) = (n)?
= 7 (the variance equals the mean). Note that this im-
portant relation can hold only for unitless integer-valued
random variables (counts) because it is not invariant with
respect to scaling. It will be shown below that natural
variability (patchiness) yields overdispersion through an
additional term o7 2.

What is the relevance of this to the Beer—Lambert law
of exponential extinction? Consider next the photon prob-
ability of transmission (no extinction) through the layer of
depth x. That is, we need to find py(x) from Eq. (1) by
setting n = 0 (7 held constant). We obtain

Polx) = exp[—n(x)] = exp(—pBx), (2)

where B = oc = A™1, with A, o, and ¢ being the mean
free path, the extinction cross section per obstacle, and
the obstacle concentration, respectively. This is in com-
plete analogy with the kinetic theory of ideal gas [Ref. 13
(p. 12) or Ref. 15]. The average number of absorbed pho-
tons is 7(x) = Bx = pN, where p is the probability of ab-
sorption (ratio of extinction cross section to beam cross
section, o/A) and N is the total number of obstacles in the
volume V, so that ¢V = cAx. Hence 8 = oc.

Now, by invoking the law of large numbers to interpret
polx), we can rewrite Eq. (2) as
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N tr

N exp(—px), (3)
which is the stochastic equivalent of the Beer—Lambert
law. Here N;,. and N, stand for the (large) number of
incident and transmitted photons, respectively, and Bx is
the optical depth.

Recall that the exponential distribution is memoryless
(e.g., see Ref. 16), that is, it satisfies factorization of trans-
mission probabilities: exp[—(x + y)] = exp(—x)exp(—y)
for nonoverlapping layers x and y. The close connection
with the statistical independence assumption is seen in
the following well-known and more direct derivation of
Eq. (3).

Subdivide the layer of depth x into many differential
layers of depths dx;, dx,, etc. Then the probability of
transmission through each layer is only slightly less than
unity and is given by 1 — Bdx;, while the probability of
transmission through the whole layer is given as (note the
assumption of statistical independence among the sublay-
ers)

Py = (1 — Bdxy)(1 — Bdxy) (1 = Bdx,). (4

Next, take logarithms of both sides, expand in Taylor se-
ries, and keep the first-order term in the expansion to ob-
tain

In(py) = —Bdx; — Bdxg — -+ — Bdx,, = —Bx, (5)

and, after exponentiation, Eq. (3) results.

We now ask: What happens if assumption (c) above
(statistical independence) is relaxed? Now correlations
appear, and there is spatial memory. Does this memory
affect the distribution of photon extinction events? In-
deed, it does, by causing deviations from the Poissonian
process and, therefore, departures from the exponential
extinction, as is shown in Section 3.

3. SPATIAL CORRELATIONS AMONG
OBSTACLES

Let us introduce correlations among positions of obstacles
in the slab; e.g., cloud droplets can cluster and exhibit
voids elsewhere. Physically, the formation of patches or
filaments can be caused by, for example, turbulent advec-
tion of the droplets or interplay of vorticity and inertia;
e.g., see a brief review of the literature in Refs. 17-19.
Note that, in spite of correlations, the distribution of par-
ticles is still regarded as statistically homogeneous (all
moments are invariant with respect to the shift of origin),
as pointed out in the quote from Ref. 11, given in Section
1. Below, we will use £ for the random number of ob-
stacles (to distinguish it from the random number of pho-
ton absorption events n).

Let two volume elements dV; and dV, be sufficiently
small that they can contain either zero or one obstacle
only and that the probability of containing two or more
particles is negligible. Hence the average number of par-
ticles £dV is also the probability that a particle is in the
volume element dV (Ref. 11, p. 351).

Then, for a statistically homogeneous random field, the
joint probability P(1, 2) of finding a particle in each of the
two volumes dV; and dVj is
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P(1,2) = E2dV,dV,y[1 + 5(1)], (6)

where & dV is the probability of finding a particle in
dV, 5(l) is the pair correlation function, and [ is the sepa-
ration distance between two volumes [statistical isotropy
is implied by 7 = #n(l)]. A somewhat less direct but per-
haps a more practical definition of 7([/) is given by

[K(DK(0) — KJ*  K(1)K(0)
n(l) = = -1, (7
K? K?

where K is the random number of obstacles in a test

volume?® and K = £V is the expected number of such par-
ticles. We see from Eq. (6) that the assumption of statis-
tical independence of counts in nonoverlapping volumes
implies that (/) = 0 because only in this case is the joint
probability simply a product of the individual ones.
However, in the presence of correlations, the conditional
probability of finding the second particle, given that the
first is there, is enhanced (or inhibited) by a factor of 1
+ 7. Equivalently, from the definition of #(/) in Eq. (7),
it can be seen that the pair correlation function is identi-
cally zero in the absence of correlations (the Poissonian
case).

If we interpret a patch or a cluster as a region of posi-
tive correlation, then the Poisson process is ideally ran-
dom in the sense that only in the case of the Poisson pro-
cess are there no patches or voids at any length scale.
Presumably, the stronger the correlation, the more sub-
stantial the violation of the statistical independence as-
sumption required in Poissonian statistics and, therefore,
the larger the deviations from the Poissonian variance.
In other words, the following question arises: Is there a
relationship between the variance of obstacle counts in a
fixed sampling volume and the spatial correlation of ob-
stacles?

It turns out that a powerful formula is available, which
indeed relates the variance of counts in a given volume to
the pair correlation function, integrated over the same
volume. It was originally developed for the case of den-
sity fluctuations in gases and liquids, but the derivation is
completely general, as can be found in Ref. 11, p. 352, Eq.
116.5:

(8K)? K
- 1= — f ndV, (8)
K viJv

where, as in Eq. (6), 7 is the pair correlation function be-
tween particle counts in volumes V; and V, within V,
SK = K—K is the deviation from the mean count in a
given volume V, and K = £V, where % is the local mean
concentration. (The 7 here differs from the v in Ref. 11
by the factor K/V.) Note that in the limiting case of no
correlation, we recover the Poisson relation (6K)? = K.

After multiplying through by K both sides of Eq. (8)
and rearranging, we obtain

(6K)? = K + 7K?, 9

where 77 = V17 dV is the volume-averaged pair corre-
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lation function. In the Poissonian case, 7 = 7 = 0. An-
other interpretation of the Poissonian limit can be ob-
tained by letting the dimensions of the sampling volume
V increase well beyond the correlation distance while

keeping K fixed. For such large distances, 7 is nearly
zero, most of the volume in the expression for 7 does not
contribute to the integral, and 7 approaches zero. Fi-
nally, cancellations of positive and negative #z regions can

also occur. Then the relation (8K)? = K is approached.
While Eq. (9) is completely general, in Section 4 we derive
it with the aid of a simple model and then use the associ-
ated probability density function to obtain nonexponen-
tial extinction.

4. SUPER-POISSONIAN MODEL YIELDS
SLOWER-THAN-EXPONENTIAL
ATTENUATION

We now come back to n (the number of removed photons)
as the fundamental random variable. Naturally, the spa-
tial correlations discussed in Section 3 yield spatial corre-
lations in the number of absorbed photons in nearby vol-
umes. Indeed, the number of extinction events will obey
Eq. (1) as long as the local mean concentration of ob-
stacles remains constant. However, on longer spatial
scales, the local concentration itself will fluctuate as the
lines of sight and the detectors move along the slab from a
cluster to a void. The local mean number of absorption
events will fluctuate along with the local concentration.
Alternatively, we can imagine [in the spirit of Eq. (4)] that
various sublayers of the slab are correlated spatially with
each other, so that their voids are more likely to be par-
tially aligned and more radiation can leak through the
layer.

Let us, for simplicity of notation, use the shorthand
p(n) for p,(x) and 72 for n(x) until the new distribution is
derived and then come back to the original notation to
emphasize the spatial dependence in n(x).

It can be seen, in view of Section 3 (also see Ref. 19,
Sect. 6) that the local mean number of adsorbed photons
7 associated with a given patch must itself be regarded as
a random variable when correlations are present. Thus
Eq. (1) holds only when conditioned upon a constant mean
extinction rate of a given blob, and to obtain the total dis-
tribution, one must integrate over the distribution of local
mean extinction rates [call it p(72)] as follows:

i »7n" exp(—n)
p(n) = f p(n|a)p(a)da = f —————p(n)d7,
0 0 n!
(10)

where the vertical bar denotes conditional probability.
Hence the process is doubly stochastic; i.e., Poissonian
fluctuations in the number of absorbed photons per unit
volume ride on top of the longer-scale cluster-to-void fluc-
tuations of local scattering rate. This approach (known
as Mandel’s formula; e.g., see Refs. 14 and 20-22) has
been used in photon optics to describe chaotic light. A
physically plausible p(77) needs to be chosen next.
Again, following the photonics example,'* we pick the ex-
ponential function. There are other reasons such as the
fact that the exponential satisfies the lack-of-memory
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property mentioned in Section 2. Also, for cloud physics
applications, we note that recent research in fluid dynam-
ics indicates that the concentration probability density of
passive contaminants suspended in turbulence tends to
an exponential form under a rather wide set of conditions
[see Ref. 19 (Sect. 6) or Ref. 23 for a brief review of the
literature and a discussion of basic physics]. Further-
more, there is no real loss of generality in choosing the ex-
ponential, as will be discussed below. Therefore set

n

7

1

p(n) = —exp
)7

(11)

where u is the global (averaged over experiments with
many correlation volumes) mean number of absorbed pho-
tons. The result of integration in Eq. (10) with Eq. (11)
inside the integral is the geometric probability distribu-
tion (e.g., see Ref. 14, p. 473):

1
n+1

“
n+ 1

(12)

p(n) =

Note that there is (as in the case of the Poisson distribu-
tion) only a single parameter here—the mean extinction
rate u—but the shape of this distribution is completely
different from the Poissonian one (much longer tail). The
geometric variance can be much larger than the Poisso-
nian value of u and is given by

(6n)? = p + p?, (13)

which is in agreement with the correlation-fluctuation re-
lation (9) when 77 = 1. Had we assumed a more general
I'-distribution family (rather than the exponential distri-
bution) for the distribution of concentration, the answer
(e.g., see Refs. 14 and 18) would have been modified only
by a constant in front of the x? term and would have been

similar to the completely general equation (n)? = u
+ 7Hm?, derived in Section 3. As discussed above, there
are two independent sources of randomness whose contri-
butions therefore add: the regular Poissonian fluctua-

tions [(6n)% = u] and the longer-scale patch fluctuations
[(6n)% = pu?].

We now come back explicitly to the question of spatial
attenuation. Recall that w(x) = Bx, where again g
= oc but the concentration ¢ is averaged over many
patches of local concentration 2. Next, we compute the
probability of no extinction (n = 0) from Eq. (12). This
yields [switching to the original notation p(n) = p,(x) to
stress the spatial dependence]

1 1
- - , 14
L (14
which can be rewritten as
N, 1
= . (15)
Ninc 1+ Bx

Hence the attenuation with distance is slower than expo-
nential [compare with Eq. (3)].
It is important to note that any other function p(72) in
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Eq. (10) still yields larger-than-Poissonian variance and,
therefore, slower-than-exponential attenuation. For ex-
ample, a more elaborate I'-distribution model (rather
than the exponential one) yields a negative-binomial dis-
tribution of counts (e.g., see Refs. 18 and 21) and, thereby,
power-law attenuation N, /Nj,. = 1/(1 + Bx)™, where m
is the parameter of the I'-function. Since the variance of
the negative-binomial distribution is (6n)% = u + u?/m,
it is identical to the completely general correlation-
fluctuation result (6n)? = u + 7 when 7= m L.
Hence the model presented here entails no significant loss
of generality.

Geometrically, any description of the patchiness p(7)
still implies spatial correlations and, by Eq. (8), increased
variance, which, in turn, leads to deviations from the ex-
ponential attenuation. Indeed, physically, the super-
Poissonian variance implies that, for a given depth x,
probabilities of having zero and “many” absorbed photons
are both larger than the Poissonian values (at the same
mean u) because of the broadening of the probability den-
sity p(n), that is, because of the variance enhancement
(e.g., see Fig. 1 in Ref. 19). This is so because the likeli-
hood of several voids to conspire and align along the line
of sight is enhanced by the spatial correlations among ob-
stacles.

Given the importance of the Beer—Lambert law, the
general (insofar as it is insensitive to a particular corre-
lation model) conclusion of power-law attenuation with
distance appears important. It is natural to inquire
whether the deviations have ever been observed experi-
mentally. For a large amount of absorbing material (but
not so large that the signal is not detectable), the differ-
ence between exp(—px) and «1/(1 + Bx) may be observ-
able as long as absorption dominates. However, when Bx
is small, Eqgs. (3) and (15) both yield 1 — Bx to first order,
while to second order the expressions are 1 — Bx
+ (Bx)? and 1 — Bx + (Bx)?/2 respectively. This may
be important when, for example, one wants to stay in a
single-scattering regime (if scattering rather than absorp-
tion dominates). For instance, the difference at Bx
= 0.1 is only approximately 0.5% and is 2% at Bx
= 0.2. Encouraging experimental results have recently
been presented in Ref. 24 showing that the power-law
photon free path distributions proposed in Ref. 7 and con-
sistent with Eq. (15) here or with the attenuation decay-
ing as 1/(1 + Bx)™ appear realistic when clouds are
present.
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