
Remote Sensing of Environment 115 (2011) 1013–1024

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r.com/ locate / rse
Hyperspectral spaceborne imaging of dust-laden flows: Anatomy of Saharan dust
storm from the Bodélé Depression

A. Chudnovsky a,⁎, A. Kostinski b, L. Herrmann c, I. Koren a, G. Nutesku d, E. Ben-Dor d

a Department of Environmental Sciences and Energy Research, Weizmann Institute of Science Rehovot, Israel
b Department of Physics, Michigan Technological University, USA
c Institute of Soil Science and Land Evaluation (310), University of Hohenheim, D-70593 Stuttgart, Germany
d Department of Geography and Human Environment, Tel-Aviv University, Remote Sensing and GIS Laboratory, Israel
⁎ Corresponding author. Current address: Harvard Sc
USA. Tel.: +1 617 3848846.

E-mail address: achudnov@hsph.harvard.edu (A. Ch

0034-4257/$ – see front matter © 2010 Elsevier Inc. Al
doi:10.1016/j.rse.2010.12.006
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 2 March 2010
Received in revised form 12 November 2010
Accepted 4 December 2010
Available online 20 January 2011

Keywords:
Atmospheric dust
Mineral dust
Hyperspectral technology
Hyperion satellite
Bodélé Depression
We study hyperspectral images of the Bodélé Depression in Northern Chad, acquired by the Hyperion sensor
onboard EO-1 spacecraft. Relative abundances of four major mineral components are obtained on a pixel-by-
pixel basis and we report on the comparison of images of a dust storm with the same areas on a calm day.
Minerals lifted and suspended particles downwind of a dust source are thus identified. Linear Spectral
Unmixing (LSU) decomposition results for the calm condition match those of our field study. LSU calm vs.
stormy comparison, based on absorbance features, highlight the spectral contrast. Despite low contrast above
bright areas, morphological dissimilarity is evident via the wave and tongue-like features, aligned with the
prevailing northeasterly winds. We analyze the longest part of shortwave infra-red (2080–2380 nm)
wavelengths where the atmosphere is transparent, optical properties are stable, and absorption features of
hydroxyl-bearing minerals, sulfates, and carbonates are pronounced. The results of our spectral analyses
reveal that clay minerals may be used as tracers for atmospheric dust monitoring even above bright areas.
Such clay minerals include kaolinite, illite-moscovite, and Fe-rich nontronite.
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1. Introduction and background

The Bodélé Depression in Northern Chad (17° N, 18° E) is the largest
source of atmospheric mineral aerosols on Earth (e.g. Prospero et al.,
2002; Washington et al., 2003, 2009). The reasons for this include: the
strength of the Bodélé Low Level Jet (Washington et al., 2005); the
structure of the lowland between the Tibesti (2600 m) and Ennedi
(1000 m)massifs, guiding and focusing the surface winds to the Bodélé
(Koren et al., 2006); extreme surface gustiness (Goudie, 2009);
availability of paleo-lake sediments, including diatomite, for large-
scale wind erosion and deflation (Mounkaila, 2006; Schwanghart &
Schütt, 2008; Warren et al., 2007; Washington et al., 2006).

Mineral dust particles are lifted into the atmosphere during
frequent wind erosion events (Claquin et al., 1999; Tegen & Kohfeld,
2006). The dust particles lifted from a specified location are likely to
have composition similar to finer particles (called potential dust
fraction, Herrmann, 1996) found in nearby soils or sediments. Dust
samples originating from the Bodélé Depression are generally
dominated by quartz, with admixtures of clay minerals and Fe-
oxyhydrates. The samples contain abundant freshwater Aulacoseira
diatoms eroded from desiccated lake deposits (Moreno et al., 2006).
Finer grain size fractions are more phyllosilicate-rich (illite, kaolinite,
andmontmorillonite) and contain higher concentrations of Al, Na, Mg,
and Fe (Castillo et al., 2008; Herrmann et al., 2009; Moreno et al.,
2006).

Hyperspectral images contain high resolution spectral curve for
each of the image pixels. This adds to conventional tools of surface
mapping the absorption bands, characteristic of mineral species
(Goetz, 2009). Imaging spectrometry (IS) is typically used in surface
mineral mapping where ground validation is possible. Such validation
is not possible for dust storms because of their transient nature and
poor access. Moreover, there is a problem of contrast, particularly in
the immediate vicinity of the dust source above bright areas, where it
is difficult to separate contribution of the dust plume from that of the
underlying surface. Even if there are spectral differences between the
suspended dust and the underlying surface, one has to separate effects
due to composition from effects that are due to size distribution
differences. Yet, tracking entrainment and deposition of dust in a low
topographic area associated with strong winds and high sediment
supply could be an exciting application of IS. Is it feasible?

To that end, Chudnovsky et al., 2009, used the Hyperion sensor
onboard EO-1 spacecraft to study three representative surface areas
(covering 60×120 m) over Bodélé Depression, Chad, during calm
weather conditions and during a stormy day. Atmospheric dust
spectra downwind of Bodélé revealed striking differences in absorp-
tion signatures across the longest wavelengths range of shortwave

http://dx.doi.org/10.1016/j.rse.2010.12.006
mailto:achudnov@hsph.harvard.edu
http://dx.doi.org/10.1016/j.rse.2010.12.006
http://www.sciencedirect.com/science/journal/00344257


1014 A. Chudnovsky et al. / Remote Sensing of Environment 115 (2011) 1013–1024
infra red (2080–2380 nm) from those of underlying surface, thus
providing evidence for mineral-based tracking of atmospheric dust.
The atmospheric gas content is almost transparent at this range and
distinct absorption features of hydroxyl-bearing minerals, sulfates,
and carbonates are presented (common tomany petrographic units of
the study area).

Here, we substantially extend the analysis by applying pixel-by-
pixel comparison of calm vs. stormy conditions. We ask: What are the
differences in mineralogical composition of calm and stormy condi-
tions, as indicated by spectral (IS) signature? Is it possible to monitor
atmospheric dust over the source area, despite relatively low spectral
contrast?

2. Study area

We compare two images of the same area, collected during calm
and dust storm conditions. The area of comparison is highlighted in
Fig. 1 by dashed red lines at the center of the original Hyperion image
(acquired on June 21, 2003 on a calm day), overlaying on a mosaic of
two LANDSAT images (acquired on June 2001 and August 2000) over
the Bodélé Depression.

The Bodélé Depression in Northern Chad was once part of the
largest lake in Africa (Drake & Bristow, 2006). The lake bed is now dry
with the exception of Lake Chad in the southern basin. Topography in
and around the Bodélé area is varied: flat in the east, rugged in the
north-east, cuesta shaped in the north and frequent yardang and
dispersed (barchan) dune fields within. Petrography is dominated by
eolian sands, lacustrine sediments (including diatomite) and (coarse)
sandstones. The former is of Holocene and the latter of tertiary age
(Herrmann et al., 2009). Diatomites occur as large surfaces within the
Bodélé and as dispersed outcrops in its surroundings, reaching a few
meters in thickness (Chappell et al., 2008; Drake & Bristow, 2006;
Herrmann et al., 2009; Warren et al., 2007; Wright, 1985). With
respect to surfaces, three major types can be distinguished: moving
sands (as sheets or dunes), lacustrine sediments (including diato-
Fig. 1. Geographic setting: Hyperion satellite path pasted over the mosaic of two Landsat im
demarcated by dashed lines is selected for the comparison between calm and stormy stat
(relative to the sampling area).
mites) in erosion and desert pavement/serir (Herrmann et al., 2009).
Serir surfaces prevail around the Bodélé, lacustrine sediments within,
and sands are ubiquitous throughout. Between approximately 15 and
16°N, extended spots of whitish lacustrine sediments occur also
eastward of the central basin. Further north (16–17°N) dunes of
barchans types, sand sheets, as well as diatomites and swamp ores
occur. Surfaces of serir type at eastern fringes of the depression have a
dark red, dark brown or even black appearance, which was assumed
by Herrmann et al. (2009) to be related to potentially Fe-rich
sandstone outcrops. Approximately at 18°N–18°E, variable sediments
occur: dunes, lacustrine sediments, and lacustrine sediments over-
laying orange-brown dune sands and thin white carbonate crusts
embedded in weakly consolidated siltstone. The Bodélé Depression
itself is dominated by vast occurrences of lacustrine sediments.
Yardang fields, with single yardangs up to 2 m high, mark the ongoing
deflation. Northwards of the Depression the surface area is charac-
terized by silty sediments and Fe-sandstones indicating strong Fe-
translocation in the paleoenvironment (Herrmann et al., 2009).

2.1. Field samples

Eight reference samples were collected from the area (Fig. 1,
Tables 1 and 2) during an expedition in 1997 as a part of the German
Climate Research Program (DEKLIM). Stratified samples were collect-
ed on-site. After reconstruction of the surface features in the
laboratory spectral reflectances in the range 320–2500 nm were
measured in the BGR laboratory Hannover with an IRIS (Infra-Red
Intelligent Spectroradiometer) radiometer, (Mounkaila, 2006) against
a white baryta paper as reference material. Afterwards the fine earth
fraction (b2 mm)was analyzed for bulk mineral composition using X-
ray diffraction (Siemens D500, Cu Kalpha radiation, powder mounds)
and Rietveld software. Geo-chemical composition was determined
with a Siemens SRS 200 X-ray fluorescence apparatus (Cr radiation).
Free iron was measured by an adapted DCB extraction (12 h, room
temperature). Finally, granulometry was assessed using a combined
ages. Also shown is the location of our reference field samples (Tables 1 and 2). Area
es. This figure shows the location of the calm image relatively to the upwind sources



Table 1
Surface description for reference sample sites.

Site Depth Stone content Stone size Slope gradient Surface
type

Surface color

cm % cm ° Munsell

1 −2 95 b4 1–2 Coarse serir 10YR7/6
8 −2 95 b2 2 Fine serir 10YR7/4
12 N30 0 – b1 Lacustrine 2Y8/2
13 1 0 – 1 Lacustrine 2Y8/2
16 1 90 N1.5 1–2 Coarse serir 10YR7/4
21 1 95 N1.5 b1 Fine serir 7.5YR//4
40 1 85 b5 1–2 Middle serir 10YR7/4
43 N10 0 – 0 Basin 10YR8/1
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sieve (sand) and pipette procedure (silt and clay) in water. These
samples supplied reference for the Hyperion reflectance data. In
particular, sample #8 (sandstone outcrop surface) is visible over the
Hyperion imagewhile others can supply additional benchmarks of the
study area, see Figs. 1 and 2 and Tables 1 and 2.

3. Methodology overview

We examined two images over the Bodélé Depression (17° N, 18°
E), Chad, acquired by Hyperion EO-1: (i) June 7, 2003 at 9:04 am local
time during a dust storm event; (ii) June 21, 2003, at 9:06 am on a
calm day.

Several strategies could be applied to analyze hyperspectral data.
Band ratios provide an efficient way to emphasize subtle spectral
variations at the surface (Clark & Roush, 1984). Linear Spectral
Unmixing (LSU) has been specifically developed to account for
mixtures (Adams et al., 1986) and can be defined as a procedure by
which the measured spectrum of a pixel is decomposed into a
collection of constituent spectra–or End Members (EM)–and a set of
corresponding fractions (abundances) that indicate the proportion of
each EM present in the pixel (e.g., Adams & Gillespie, 2006). This
method requires a set of EM (library) spectra that could come either
from laboratory spectra of samples, field measurements, or spectra
collected from the image itself. Spectral Angle Mapper (SAM) is a
physically-based spectral classification that matches pixels to EM
spectra. The algorithm determines spectral similarity by calculating an
angle between the spectra as members of a vector space whose
dimensionality equals the number of bands. Classifications based on
statistical analysis form another group of methods (e.g. G-mode
classification, Principal Component Analyses, and minimum noise
fraction transform (MNF)) which can be combined with the Pixel
Purity Index (PPI) (Boardman et al., 1995; Green et al., 1988).

In the present study, we began with a part of a Hyperion calm
scene, geographically identical to its stormy Hyperion counterpart
(highlighted in Fig. 1 by dashed red lines, Section 3.4). We used SAM
classification and six EMs as an input for classification, based on
reference sample composition (Table 2). Comparison of a reference
EM with the most similar pure image pixel was also used as a quality
Table 2
Reference samples their coordinates and physical, chemical and mineralogical properties.

Chad Coordinates Fe total Fe da Sand Silt Clay Bulk mineral composi

Sites N E % % % % %

1 178 1792 0.85 0.4 94 4 2 Quartz 94%, feldspars
8 1777 1735 1.39 0.5 90 6 4 Quartz 90%, feldspars
12 1745 1748 4.83 0.9 2 57 42 23% quartz, 26% feldsp
13 1738 1751 4.31 1.1 3 62 35 24% quartz, 26% feldsp
16 1768 1768 0.82 0.3 92 6 2 Quartz 92%, feldspars
21 1763 1723 1.33 0.3 91 6 3 Quartz 91%, feldspars
40 1691 1871 0.63 0.2 92 6 2 Quartz 92%, feldspars
43 1624 1862 0.67 0.2 13 50 37 Calcite 28%, gypsum 2

a “free” iron as determined by cold dithionite extraction (12 h).
pre-processing assessment of a calm image. A comparison of calm and
stormy images is a second main part of our study. Here we use LSU to
explore the differences in mineralogical composition of two scenes.

3.1. Image processing

Both images (calm and stormy) were pre-processed and adjusted
according to the Hyperion user guide (Barry, 2001). Both images were
then processed to remove molecular and aerosol scattering attenu-
ation via the ACORN atmospheric correction code (AIG, 2001).
Spectral smoothing (averaging of several consecutive reflectance
values around a nominal wavelength, segment size for averaging
3×3) was applied to every pixel in the image (Duckworth, 2004).
Additional smoothing filter (segment size 3×3) was applied across
our working region (2080–2380 nm). Finally, the images were geo-
referenced for subsequent spatial change detection analysis (for more
details see Chudnovsky et al., 2009).

3.2. Spectral library

In this study we try to identify suspended and transported
minerals. Since natural minerals are almost always strongly mixed,
the input library was made from laboratory spectra of pure minerals
(EM). We use the “USGS Spectral Library for Minerals” database
(packaged with hyperspectral image-processing ENVI software,
http://www.ittvis.com/) as a spectral reference for analysis of the
Hyperion data.

The Bodélé Depression contains predominantly lacustrine sedi-
ments. These consist of clastic sediments originating from the Tibesti,
clay minerals precipitated from the lake water (as presently happening
in the Lake Chad), and limnic organisms (i.e. diatoms) (Herrmann et al.,
2010). Bulk mineral composition of dust samples (as assessed by XRD
analyses), shows not only the low-lying lacustrine sources but also the
whole assemblage of erodible surfaces of the area contributing to the
mineral assemblage of transported dust (Herrmann et al., 2010). Dust
samples originating from the Bodélé Depression (e.g. Herrmann et al.,
2009; Moreno et al., 2006; Prospero et al., 2002) are rich in silica
(quartz and diatoms) and aluminosilicates (smectite, kaolinit) and
tion

5–15 and the rest mainly layer silicates
5–15 and the rest mainly layer silicates
ars, 15% kaolinite, 21% mica/illite and 5% 14 A layer silicates, gypsum 5%
ars, 24% kaolinite, 21–24% mica/illite and 5% 14 A layer silicates and gypsum N5%
5–15 and the rest mainly layer silicates
5–15 and the rest mainly layer silicates
5–15 and the rest mainly layer silicates
%, quartz 28%, feldspars 4%, kaolinite, 21%, mica/illite 12% and 5% 14 A layer silicates

http://dx.doi.org/10.1029/JB091iB08p08098
http://www.ittvis.com/


Fig. 2.Mineralogy validation for one reference sites. Upper panel: Zooming in on sample site 8: field spectrometer and Hyperion spectral measurements for the entire spectral range
VIS-NIR-SWIR. Lower panel: Zooming across 2080–2380 nm.
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silicates (feldspar), accompanied calcite. The mineral composition of
the soil/sediment samples varies depending on the major genetical
processes. Here only the uppermost soil/sediment samples are
described. Granulometry has a strong impact on the mineral compo-
sition. Since serir surfaces are coarse in nature, quartz dominates,
locally varied by Fe-oxyhydrates (from iron-rich sandstone). Feldspars
(i.e. albite) as tectosilicates are also more prominent in the coarser size
fractions. The lacustrine samples with a silty to clayey texture are
relatively rich in phyllosilicates, mainly Mg- and/or Fe-rich smectite
(see also Gac et al., 1977; Pedro et al., 1978). Also kaolinite and illite
occur but in different shares. Only lacustrine samples have shown
significant presence of gypsum, depending on the evaporitic nature of
this sediment type (Herrmann et al., 2010).

Literature review (Bristow et al., 2009; Castillo et al., 2008;
Chappell et al., 2008; Moreno et al., 2006; Mounkaila et al., 2003;
Prospero et al., 2002; Wright, 1985) and our field analyses yielded an
approximate database library consisting of 18 minerals that can be
found in the study area: phyllosilicates (muscovite, illite, vermiculite,
montmorrillonite, nontronite, saponite, chlorite, kaolinite, and paly-
gorskite), oxides and oxihydrates (gibbsite, hematite and goethite),
sulfates (gypsum) carbonates (calcite, dolomite), and other silicates
(albite and pargasite) including quartz. Quartz, hematite, goethite,
albite, and pargasite were excluded from the overall analyses because
they lack absorbance features across the longwavelengths. This left 12
minerals as input for mixture analyses. While being somewhat
restrictive, when compared to the true mineral diversity in the
study area, this database nevertheless captures the essential signa-
tures as shown below.

3.3. Calm scene analyses

Based on field analyses of the likely minerals on the ground
(Table 2), pixels that best matched the spectral signatures of six
endemic minerals were identified via the SAM classifier (Boardman,
1998). Since no validation of a dust storm image is possible, one
resorts to the calm scene analyses for an additional assessment of the
quality of dust image spectra. The following reference minerals were
used: illite, vermiculite, montmorollonite (smectite), nontronite (Fe-
rich clay), kaolinite, and calcite. We extracted the spectral signatures
of these minerals from the USGS spectral library (e.g. reference
spectra, or EM), and applied SAM classifier to the calm scene of the
Hyperion image data in order to locate the pixels with spectral
signatures closest to data base minerals. SAM classifier treats an
observed reflectance spectrum as a vector in a multidimensional
space, whose number of dimensions equals the number of spectral
bands (Lillesand & Kiefer, 2004). To compare image pixel spectrum
and a library EM spectrum, SAM technique defines the multidimen-
sional vectors for each spectra and the angle θ between the two
vectors is calculated (Kruse et al., 1993). If this angle is smaller than a
given tolerance level, the spectra are considered to match (e.g. the
closer the resemblance to the reference spectrum). Pixels exceeding
angle threshold θMAX are identified as not belonging to the class of
materials identified by the reference EM. We used a threshold of
θMAX=0.1 radians (Kruse et al., 1993) to find pixels, spectrally similar
to the reference USGS spectrum (see Fig. 3b). Average spectra of the
selected pixels were then compared to the reference EM spectrum.
Next, the pixels, spectrally closest to each of the reference minerals
were overlaid on a calm scene to show the distribution of the
spectrally predominant minerals (based solely on absorption fea-
tures). Because of relying on spectral shapes (as opposed to overall
magnitude), SAM is less affected by the variable contribution of the
illumination (or albedo) and topography across the scene (Lillesand &
Kiefer, 2004).

3.4. Calm vs. stormy scenes

How should one best compare calm and stormy images? We
employ the following approach to account for the EM spectra. First we
apply the LSU, where the observed spectral response from an area on
the ground is assumed to be a linear mixture of the individual spectral
signatures of the various surface cover types (in our case, minerals).
Next, we determine spectral changes of a given pixel from calm to
stormy conditions in order to enable a spatial view of the differences
and abundances of the selected EMs. LSU may also shed light on
mineral variability between both images. In LSU, the weight for any
given EM signature is the fractional area occupied by the associated
mineral. LSU approach used in this study is designed to match an
unknown spectrum (a mixture) using a linear combination of
reference EM spectra. Each pixel of an image is processed indepen-
dently (Boardman, 1989, 1993; Lillesand & Kiefer, 2004). Based on our

image of Fig.�2


Fig. 3.Mineralogical composition map of the calm image. Left panel: distribution of six mainminerals within the image. Spectral signatures of theminerals used to identify the image
pixels most closely matched to the spectral library signatures, and thus chosen to represent locations where that mineral is dominant. Right panel: Mean reflectance spectra of the
corresponding pixels (color), compared to the spectral library signatures for the basis minerals (black).
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reference spectral library, all the n=4 combinations of EMs for both
images were explored. This way we identified the minerals shared by
both images. Solutions with negative coefficients were discarded and
one with the lowest Root Mean Square Error (RMSE) was retained.
The maximum number n=4 of EM used in LSU analyses was selected
because it allows about 90% of the pixels of an Hyperion image to be
modeled with RMSE lower than 35%. We observed, that setting
gypsum as additional EM (n=5) reduced the RMSE to 25% while
setting n=3 decreased dramatically the quality of the results.
Importantly, LSU analyses performed by using smectite and illite as
a separate EM in the input library gave higher RMSE values for stormy
pixels. Probably, nearly equal absorption wavelengths for smectite
and illite (i.e. 2200 vs. 2210 nm) cause such errors. This confirms the
initial choice of grouping these minerals in a single spectral family in
order to avoid over-interpretation within a family of clays (phyllo-
sillicate group of minerals).

Finally, we analyzed the RMS pixels to determine areas of missing
or incorrectly selected EMs. Higher RMSE values suggested an
incomplete EM selection for the corresponding pixels or other causes
of bias between the linear assumption of the LSU and the true spectra
of suspended dust. Lower RMS values demonstrated successful
mineral identification for the pixel in question.

In order to contrast the dust plume and the underlying surface, and
to quantify the change between stormy and calm scenes, we
calculated a Spectral Ratio Images (SRI) for each wavelength:
stormy/calm. A major advantage of using SRI is that it conveys the
spectral or color characteristics of image features, regardless of
variations in scene illumination conditions (Lillesand & Kiefer, 2004).
In addition, the SRI shows calm to stormy changes in slopes of the
spectral reflectance, regardless of the absolute reflectance values. We
scaled the SRI results by using area with no apparent spectral changes.
The expected SRI for “no-change” is unity in all of the spectral bands,
was used as EM. If the average deviation from the EM “no change”
spectrum at all wavelengths falls within values of ±0.10–0.12, the
image spectrum for that pixel is considered tomatch the EM. Next, SRI
image was used as a base image for SAM classification. Our previously
defined “no-change” EMwas selected as input. Here SAMwas applied
separately for visible (400–680 nm) and for 2080–2380 nm. We used
a threshold of θMAX=0.1 radians (Kruse et al., 1993) to find pixels,
spectrally similar to the EM. Pixels further away than a specified
maximum angle threshold θMAX were identified as areas of apparent
change between two scenes, whereas the opposite was defined for the
areas where no spectral change had occurred.

4. Results and discussion

4.1. Laboratory vs. remote hyperspectral data

Mineral compositions of field samples are quite similar and include
quartz, feldspars, mica/illite, vermiculite, kaolinite, and gypsum
(Table 2). The clay mineral composition of the clay fraction (b2 μm)
as determined by semi-quantitative analysis on sediment specimen in
samples #1, 8, 16, 21 and 40 comprises smectite (40–65%), kaolinite
(10–40%), vermiculite (5–30%) and illite (less than 5%). Based on the
geo-chemical data and on texture and bulk mineralogy, we conclude
that a significant fraction of Fe is bound in the phyllosilicates (mainly
clay minerals). Fig. 2 shows the reflectance spectra of sample #8 (serir
surface with sandstone fragments) measured by an IRIS spectrometer
vs. Hyperion spectra showing the whole spectral range (400–
2400 nm). As shown in Fig. 2, Hyperion data and the real surface
reflectance spectra are similar. Both curves exhibit absorption (dips in
reflectance) around 650 nm (Fe-oxides) and at 2200 nm (clay
minerals). Sample #8 appears as yellowish brown (10YR7/4 dry
Munsell color) and across visible region exhibits absorption at 650 nm
due to free iron compounds. By exploring image pixels from North to
South it was observed that the dip at 650 nm is more pronounced for
sample #8 and areas north of Bodélé on Fe-rich sandstone, and
weaker for the cover sands towards the southern part of the image.

4.2. Surface mineralogy

What are the dominant minerals found in and around the Bodélé
Depression? Fig. 3 highlights similarities between the spectral
signatures of the image and the USGS spectral library. Fig. 3a shows
the SAM distribution of six reference minerals above calm Hyperion
grey-coded image at 586 nm. In Fig. 3b, for each mineral, the mean
reflectance spectrum of the corresponding classified pixels (same
color) is compared to the spectral library signature for that mineral
(shown in black). These results confirm the appearance of the
reference EM minerals. It also shows important spectral differences
among the minerals, in terms of size, shape, magnitude and
wavelength position of absorption features.

All sites (including all petrographies) show a broad absorption
centered at 2200 nm representing aluminosilicate clay minerals
(illite, kaolinite, and montmorrillonite). There is a hint of some
carbonates in the southern areas. Themeasured spectra indicate these
and other minerals, with overlapping spectral absorption features
(Fig. 3b, panels 1–6). Kaolinite can be separated from illite and
smectites because of prominent doublet absorption at 2163 nm and
2200 nm. Fe- and Mg-rich smectites are also found throughout the
area (Herrmann et al., 2009;Mounkaila, 2006) as, indeed, indicated by
absorbance by Fe/Mg hydroxyl bonds around 2300 nm: (Hunt, 1977).
High Fe concentrations found in lacustrine sediments (Table 2) are
related to local sedimentary conditions. Throughout diatomite and
lacustrine sediments we observe the spectral features of nontronite at
2285 nm — a Fe-rich clay mineral as expected in and around the
Bodélé, based on Mounkaila (2006). Pedro et al. (1978) raised the
question of nontronite origin in Lake Chad lacustrine sediments. These
authors observed the formation of nontronite by combination of
previously precipitated ferric hydroxides with silica (or silicate
minerals), under slightly reducing conditions.

Sand dunes and areas from the southern part of the image show
absorption near 2335 nm, indicating carbonate (calcite) presence but
field data to confirm this is not yet available. Gypsum (sulfate group) is
also detected in lacustrine sediments but it lacks unique absorption
bands across the 2080–2380 nm. Field samples (Table 2, samples 12,
13), however, confirm the presence of gypsum in lacustrine sediments.
In addition, we also rely on the convexity in the curve between 2330
and 2350 nm to indicate the presence of gypsum (Chudnovsky et al.,
2009). Finally Mounkaila (2006) detected 6.6% of gypsum in sample 43
located in the southern part of the image in Fig. 1.

The relevance of the LSU modeling results can also be checked by
looking at the spectral adjustment. Fig. 4 shows a comparison
between the data (thick line) and the linear mixing model (dotted-
dashed lines) for two pixels in kaolinite-rich and vermiculite-rich
areas, respectively. Dashed and dashed-dotted lines correspond to
spectra of EM which have been retained by the LSU, multiplied by
their mixing coefficient. It shows howmuch a given EM contributes to
the final modeled spectrum. The presence of several diagnostic bands
such as kaolinite, vermiculite and Fe-rich clay (nontronite) improves
the confidence level in the detection of the corresponding mineral.

4.3. Lifting of dust

Here we explore the differences in mineralogical composition
between calm and stormy images as a step towards understanding of
the dust lifting process. In addition, we study the influence of the
underlying background on the monitoring of atmospheric dust.
Fig. 5c–g shows the LSU output where calm and stormy images pixels
were used to determine the fractional cover of kaolinite, illite–
smectite, Fe- and Mg rich clay, and vermiculite. Both images exhibit
spatial heterogeneity in the fractional cover of minerals. Moreover, for



Fig. 4. Comparison between Hyperion data (denoted as 1) and spectral mixture model. Each spectrum of the input library (vermiculite, kaolinite, illite, and nontronite) has been
multiplied by its mixing coefficient. Left: (2) 20% vermiculite, 20% nontronite, 30% kaolinite, 30% illite; (3) 40% vermiculite, 10% nontronite, 20% illite, 30% kaolinite, (4) 50%
vermiculite, 10% nontronite, 10% nontronite, 20% illite, 20% kaolinite, (5) 50% vermiculite, 10% nontronite, 20% illite, 20% kaolinite; (6) 40% vermiculite, 10% nontronite, 20%
kaolinite +30% illite; (7) 60% vermiculite, 10% nontronite, 20% illite, 10% kaolinite. Mixture 7 was found to be the best matched spectra with the lowest error comparing to
others. Right: (2) 10% vermiculite+10% illite+30% kaolinite+50% nontronite; (3) 10% illite+10% vermiculite+50% kaolinite+30% nontronite; (4) 20% illite, 20%
vermiculite, 50% kaolinite, 30% nontronite; (5) 10% ver+10% illite+30% kaolinite+50% nontronite; (6) 10% illite+20% vermiculite+40% kaolinite+30% nontronite; (7) 10%
vermiculite+10% illite+30% kaolinite+50% nontronite; (8) 10% illite+10% vermiculite+40% kaolinite+40% nontronite. Mixture 6 has the lowest error.
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the stormy state, most minerals exhibit a change in per-pixel fractions
towards southern part of the image. Vermiculite fraction does not
exhibit such a change. Possible explanations for these differences
include: 1) transport mechanism process favoring finer sizes and
therefore clay minerals (Herrmann et al., 2009); 2) different mineral
Fig. 5. Anatomy of a dust storm revealed by mineral tracers. LSU results for the calm day im
pixel fractions of five basis minerals: c: kaolinite, d-illite-smectite, e-Fe-Mg rich clay, f- verm
with earlier image analysis (Chudnovsky et al., 2009). Insofar as the classification reveals
obscured by scattering. Themineral fractions provide striking markers of spatial tongue-like
winds between two mountain ridges.
assemblage of dust from upwind sources in comparison to the surface
material (Herrmann et al., 2009); 3) difference in spectral contrast
between dust and its underlined bright/dark surface. In fact, visual
interpretation of other Landsat images from stormy days has shown
that lacustrine surfaces are strong emitters if conditions are matched
age (a, natural color) and the dust storm image (b, natural color). Color-coded are per-
iculite, and g- RMS error (%). The LSU results agree with our field study (Table 2) and

surface morphology (contours), storm anatomy is revealed as well, unless completely
structures, embedded within the north-easterly dust plumes, advected by the prevailing

image of Fig.�4
image of Fig.�5


Fig. 6. Scatter plot of calm vs. stormy LSU classification shown as mineral contrast in both conditions. Left (a and b): Pixel per-pixel kaolinite fraction (a, upper) of a stormy state
plotted vs. the same fraction in a calm state. Numerical ranges of these fractions barely overlap, indicating upstream origin of stormy kaolinite. Highlighted in red are pixels with low
kaolinite content in the calm state image and high kaolinite content in stormy state. Right: “Red pixels” are overlaid on RGB of calm (1), and stormy day (2). Illite–smectite and Fe–Mg
rich clay fractions for both states are presented in panels b and c, respectively. Remarkably, these pixels are faithful flow tracers. This is evidenced by the wavy jet-like morphology of
the red pixels (kaolinite-deficient in clean state), whose axes are aligned with the north-easterly winds.
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Fig. 7. Spectrum comparison. a: Mean spectra of high RMS values compared with
diatomite surface as measured by Hyperion, by field spectrometer (sample #12, Fig. 1)
and diatomite collected in Nevada, USA. b: Zoom in on sample #12 showing
pronounced absorption features across 2080–2380 nm. Note absorption at 2200 nm
related to clay minerals and at 2284 nm related to Fe–Mg–OH group.
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(presence of saltating particles). Thus explanations 2 and 3 are most
probable. The difference between the northern and southern part of
the image is that in the northern particles entrained from the
lacustrine surfaces are traveling over lacustrine surfaces, while in the
southern part after entrainment from the spotlike occurring lacustrine
surfaces, the material is traveling already after short distances over
different surface types. The grain size distribution and grain size
selective dust uplifting at the study area require separate research and
laboratory analyses (see Maurer et al., 2010).

LSU analyses show that the abundance of studiedminerals for both
states varies across the image. So, which pixel states (stormy or calm)
show higher phyllosilicate mineral fractions? What are the differ-
ences per pixel with respect to clay composition? A scatter plot
comparing the LSU quantitative mapping of each mineral pixel for
stormy and the calm image state is an effective way to explore this.
Random scatter suggests no correlation of LSU results between the
two states and indicates that significant changes during the storm
event whereas the opposite is implied by a linear scatter plot. Scatter
plots for kaolinite, illite–smectite and Fe–Mg rich clay (Fig. 6) show
random scatter type. This result reflects the influence of upwind
sources on the LSU output for the stormy state. For example, the
scatter plot for kaolinite (Fig. 6, upper left) shows that calm pixels
may have b10% of kaolinite, whereas the same pixels in the stormy
state show N25%. This is explained by the fact that terrestrial sources
with higher kaolinite share contribute to the signal to the generally
kaolinite poorer lake sediments, where kaolinite was diluted by
precipitation of 2:1 phyllosilicates from the evaporating lake water.
Generally, the center of the scatter plot is shifted to the left of the 1/1
line, representing a trend toward higher kaolinite concentrations
during the storm event and suggesting downwind transport.

We highlighted in red all pixels with large calm to stormy
differences (Fig. 6-1 and -2). Strikingly, the red pixel geometric
pattern matches up with the predominant northeasterly wind
direction characteristic for Harmatan condition in West Africa and
reinforced locally by the orographic obstacles Tibesti and Ennedi. The
long fetch is conducive to the Owen effect (Gillette, 1999). The fact
that kaolinite and illite–smectite fractions show a different pattern
might be related to the differences in average grain size. While
kaolinite can grow under terrestrial conditions to sizes N2 μm, freshly
precipitated smectite often occurs in the submicron range. Thus
kaolinite frequency is higher where the dust plume is less thick (less
bright on the image) meaning a transport closer to the surface.

Thus, LSU analyses and scatter plot comparison of calm and stormy
images reveal the morphology of a dust storm (Figs. 5, 6). In
particular, abundances of all studied mineral components reveal
flames/“tongues”, aligned with prevailing wind patterns (NE). Why
are these “flames” so consistent in direction? Local topography
promotes strong NE winds via funneling by the Tibesti and Ennedi
mountain ridges (Washington & Todd, 2005). The NE propagation
pattern emerging from our analyses points towards a long-term
process confirmed by similar pattern (i.e. Herrmann et al., 2009) and
frequent NE-oriented landscape features on the respective Landsat
images (see Fig. 1). It also points towards homogenization of the fine
fraction over large areas via constant redistribution of surface
material, especially its finer fractions as already stated by Herrmann
(1996). Furthermore, as evident from LSU analyses, these “flames”
cover different types of the underlying surface (Figs. 5, 6) such as
barchan-type dunes, obscured by the dust plume.

RMSE images shed additional light on the minerals missed in our
classification scheme. From Fig. 5g, the pixels with the largest error for
the stormy case were selected. These pixels suggest the presence of
minerals not included in our analyses. In Fig. 7(a), we compare the
high RMSE mean spectral reflectance curve (taken from the stormy
image pixels) (denoted as 1) with spectral reflectance of several other
diatomite surfaces: sample #12 (lacustrine sediment surface north of
Bodélé Depression) measured by IRIS spectrometer (denoted as 2),
,

http://dx.doi.org/10.1002/esp.1975
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surface denoted as 3 which is spectrally similar to sample #12 but
measured by Hyperion, and surface 4, other kind of diatomite from
Nevada, USA (Kratt et al., 2006). In order to get spectra of surface 3,
spectra of sample #12 was used EM for SAM classification, and pixels
most spectrally similar to #12 were therefore selected. This was done
since sample #12 is not within the Hyperion path and no image
spectra for this sample can be provided except of looking for spectrally
similar pixels. Reference sample #12 is pure finely sized bright
lacustrine sediment (Tables 1, 2), characterized by high Al and Fe
content, low kaolinite, and high smectite (60% in clay fraction)
concentrations (Herrmann et al., 2009). Note that this sample
represents a lacustrine environment with reducing, neutral to slightly
alkaline (Mg-rich smectite, gypsum) conditions. The diatomite
spectra appear similar to the spectra of high RMS pixels. Hence,
suspended dust may also contain diatomite tracers. This is to be
expected since several authors (i.e. Drees et al., 1993; Mounkaila,
2006) described diatom occurrence in Harmattan dust samples
collected over eastern West Africa. However, low spectral contrast
precludes quantitative estimates of atmospheric diatomite particle
concentration above an underlying diatomite surface. And even over
non-diatomite surfaces non-crystallinity and transparency of the
material hampers quantification. Therefore, this surface was excluded
from the LSU analyses due to the lack of pronounced absorption
features across SWIR. Larger errors are also observed in the northern
part of the image, where the surface is dominated by amixture of sand
and diatomite and the dust plume is less dense. Note that diatomite
from Nevada is different in its mineralogical properties (Kratt et al.,
2006).

It is equally important to note that variations inmixing coefficients
account for both mineral fractions and particle size. Thus, minerals
contained in a surface do not contribute to the total reflectance
spectrum as a sum of reflectance spectra, and the coefficients obtained
for each mineral are not equal to their true abundance (e.g. unlinear
Fig. 8. Relative stormy to calm changes. (a, b) Color composites of Hyperion data for the Bod
Color composites of Ratio Image (stormy/calm) in VIS and SWIR, respectively. For (c) 640 n
respectively). For (d) 2300 nm as red, 2200 nm as green and 2100 nm as blue (bands 155
respectively. Darker (blue) tones indicate regions of insignificant changes between the tw
change (hence, the ratio values are about unity).
mixing, Hapke, 1981, 1993). As a consequence, this method can be
used as a qualitative detection of components only. Here, for a given
mineral we establish calm to stormy variation maps and interpret
these as relative spatial distributions. This allows for quantitative
comparison and dust storm monitoring.

In order to quantify the relative change between stormy and calm
scenes, the SRI image is displayed in Fig. 8(c–d) across 400–680 nm and
2080–2380 nm. As can be seen, sands located at the northern part of the
image (denoted by 1) appear in darker tones, indicating no significant
changes between the two dates. This is probably due to several facts: i.
the occurrence of serir surfaces hindering deflation and ii. the wind
shading due to the closer setting to orographic highs. Higher ratio
values are depicted in brighter tones. Across 400–680 nm, the main
change occurs above sands (southern part of the image) caused by the
floating dust increasing the overall albedo over the relative darker
terrestrial materials; whereas for 2080–2380 nm, brighter tones appear
above bright lacustrine sediments and sands (central and southern
parts) caused by the mixed transported material increasing i.e. the
kaolinite signal over lacustrine surfaces and decreasing it over
terrestrial ones. The SAM classifier based on SRI for 400–680 nm and
2080–2380 nm, respectively is displayed in Fig. 8(e–f). Across 400–
680 nm, the areas of change appear above sands (red colored tones),
where the spectral contrast above underlying surface and the dust
plume is the highest across the image. In contrast, when SAM is applied
across 2080–2380 nm, the main change is centered above bright
lacustrine sediments and sandstone outcrops. These results lead us to
the conclusion that 2080–2380 nm has a potential to retrieve the dust
plume signature by tracing clay minerals over the bright surfaces.

5. Concluding remarks

We've argued that spaceborne hyperspectral sensors can detect
differences in mineralogical composition of calm and stormy images,
élé obtained on June 7, 2003 (calm day) and June 21, 2003 (stormy) (c,d, respectively).
m is displayed as red, 548 nm as green and 457 nm as blue (RGB, bands 22, 13 and 5
, 145 and 135). (e–f) SAM classifier based on SRI for 400–670 nm and 2080–2380 nm
o dates. (g) The spectral reflectance of area 1, representative of insignificant spectral
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thereby contributing to our understanding of dust lifting patterns. We
also examined theweak contrast problem occurring in the vicinity of a
dust source, rendering difficult the separation of a dust plume from an
underlying surface. To that end, we identified the main minerals
presented at the surface of the calm state image using SAM classifier.
Next, we applied LSU on a pixel-by-pixel basis to determine mineral
fractions that calm and stormy images share. The lowest RMSE was
retained for kaolinite, illite–smectite, Fe-rich clay (nontronite) and
vermiculite. These fraction assessments of each mineral for both
images enabled us to track dust plumes. Minerals, lifted and
suspended particles downwind of a dust source were thus identified.

The calm vs. stormy classification technique was also applied to the
Ratio Image with the aim to study the dust signature and the calm vs.
storm mineral contrast. Importantly, across 2080–2380 nm, the
contrast above bright areas is discernible. Although, for certainminerals
this contrast might be low and morphological rather than spectral in
character, the spatial dissimilarity between the two states is rendered
evident.

The results reveal the tongue-like formations in the stormy state,
indicating suspended dust entrainment by NE winds. The dust
signature is characterized by a clay mineral assemblage (kaolinite,
illite-moscovite, and Fe-rich nontronite) mixed, presumably, with
eroding diatomites. Our analyses rest on pronounced spectral
absorptions across SWIR with features centered at 2200 nm,
2285 nm, 2300 nm and 2324 nm (metal (Al–Fe–Mg)–OH absorp-
tions). These lead us to the conclusion that clay minerals may be used
as tracers for atmospheric dust monitoring even above bright areas.
Future missions should explore the possibility of retrieving aerosol
optical depth (AOD) over bright areas based on 2080–2380 nm, with
high spectral resolution capabilities. Such information cannot be
obtained from current generation of satellites in orbit, such as MODIS.

There is much to explore, as our analysis of dust mineralogy is not
complete. The atmospheric scattering in the visible region is more
complex than in the shortwave and requires a more complex
modeling than simple weighting. Also, spectrally featureless minerals
within 2080–2380 nm e.g., quartz and feldspars have not been
considered. Of course, minerals with similar absorption such as
vermiculite and chlorite (both at 2324 nm) cannot be separated. We
also plan to explore the thermal region (see http://www.enmap.org/
and http://hyspiri.jpl.nasa.gov/).

Despite the limitations, our approach demonstrates considerable
potential of hyperspectral data for dust mineralogy and transport. In
particular, hyperspectral monitoring of dust plumes over dark back-
ground downwind of the Bodélé dust source such as over Lake Chad
should be done. Here background is less pronounced so that
quantitative and mineral analyses will likely be more precise.
Propagation pattern analysis towards identification of other “hot
spots” (prolific dust emitters) is also of great interest but the narrow
Hyperion path does not cover these regions. Another issue is localization
of iron sources. Chudnovsky et al. (2009) pinpointed the presence of
goethite in topsoils of theHyperion image. However, field samples show
high total Fe concentration of lacustrine sediments (grey-bright
surfaces). How is the iron bound in these sediments and how does it
contribute to the long-range transport? This affects fertilization of the
Amazon Rain Forest as well as the oceanic phytoplankton.
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