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ABSTRACT

By definition, steady rain should have a nearly constant rainfall rate. Thus far, however, the criteria for
determining when rain is steady remain qualitative and arbitrary. The authors suggest a definition for steadiness
that can be used to quantify the elusive notion of natural variability. In particular, the logical criteria for steadiness
imply statistical stationarity and lack of correlation between raindrops in neighboring volumes, requirements
identical to those for the drops being distributed according to a Poisson process at all scales. Hence, steady rain
is Poissonian. Explicit equations for the variance of the rainfall rates are developed. They show that, in2sR

general, raindrop clustering enhances the variance beyond that for Poissonian rain ( ). It is also demonstrated2sP

by using observations that this enhancement is augmented further when the rain is statistically nonstationary.
Identifying steady rain is important. To be specific, because steady rain is statistically stationary, the drop size
distributions have physical, deterministic meanings independent of the measurement process. Observables such
as the radar reflectivity factor and the rainfall rate are then steady and linearly related also. Techniques for
determining when rain is steady are discussed. The ratio / is proposed as a useful quantitative measure of2 2s sR P

the steadiness of the rain. It is also shown that an estimate of the minimum possible standard deviation for steady
rain is / where and are the mean rain rate and average number of drops per sample, respectively.R Ïk R k
Examples using video-disdrometer data are also presented.

1. Introduction

One of the highlights of the 1952 movie Singin’ in
the Rain is Gene Kelly dancing with his umbrella in a
downpour while singing the hit song of the same name.
This was not ordinary, natural rain, however, but a Hol-
lywood simulation produced by sprinklers that gener-
ated a shower having a uniquely steady and, somehow,
unnatural rain. What is it about that studio rain that made
it so apparently artificial? One answer is that the rain
was simply lacking natural variability. But, then, what
exactly does that mean?

Aside from demonstrating a clear need to improve
the realism of rain simulation capabilities in Hollywood,
this concept of steady rain is often used as a benchmark
to characterize the properties of rain. For example, List
(1988) highlights the importance of observations in
steady rain for determining drop size distributions and
radar reflectivity factor–rainfall rate (Z–R) relations in
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radar meteorology. Yet, steadiness is never defined in
that paper.

A review of the literature reveals that, even at present,
the identification of steady rain still remains elusive.
For example, Sauvageot and Koffi (2000), in a study of
observations of multimodal drop size distributions, as-
sume that all fluctuations in R in excess of 0.2 mm h21

arise from deterministic causes even for R of several
millimeters per hour. But do they? Sauvageot and Koffi
(2000) raise a number of important questions in their
work, but the choice of the cutoff between variable and
constant rain rates appears to be ad hoc. Here we attempt
to provide such studies a more precise approach for
defining steadiness quantitatively.

The question we address in this work, then, becomes,
‘‘Is there a more systematic approach for specifying with
precision when rain is steady?’’ We believe that there
is. With the tools developed below, it should then be
possible to survey rain systematically in various kinds
of meteorological conditions to identify those most com-
monly associated with steady rain, if it exists at all.
However, we emphasize at the outset that the purpose
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of this article is not to perform such a survey but, rather,
to develop the tools necessary for quantifying the steadi-
ness of rain applicable to future research. Before pro-
ceeding, however, it is necessary first to define steadi-
ness and to understand some important statistical char-
acteristics of rain.

By definition, steady rain should be nearly constant.
But what does that mean exactly? At the very least,
steadiness logically requires that the mean values (and
variances) should remain fixed; that is, they should not
depend upon the point of origin of observations within
the total space sampled. Rain cannot be steady if, in
fact, the mean rainfall rate changes while being ob-
served. In the words of stochastic theory, therefore, the
rain should be statistically stationary. But that alone is
not a sufficient condition for steadiness. In steady rain,
the drops should also be distributed spatially as uni-
formly as randomness allows. Why? Because if this
were not so, then drops would tend to arrive in clusters
interspersed with voids relatively deficient in drops so
that the rain rate would fluctuate rather than remaining
steady. Such fluctuations from drop clustering can occur
even in statistically stationary rain as discussed further
below, so that we must have some measure for detecting
drop bunching or clustering when searching for steady
rain. As we will see, this measure is achieved by using
the pair-correlation function. The absence of clustering
is characterized, then, by having no correlation between
the number of drops in neighboring volumes.

These two concepts (statistical stationarity and lack
of pair correlation) led Kostinski and Jameson (1999,
their footnote 5) to propose that steady rain is Poissonian
rain so that any excess variance of the rainfall rate above
that for an equivalent Poissonian rain can be attributed
to natural variability. In the more applied framework of
this work, we claim here that the rainfall rate will then
be as constant as statistics will allow when the rain is
Poissonian. So what is Poissonian rain?

Simply put, Poissonian rain is rain in which all the
drops obey Poisson statistics on all scales. Poisson sta-
tistics require three assumptions (e.g., Ochi 1990). The
first is that the probability of detecting more than one
drop in a given volume dV is vanishingly small for
sufficiently small dV. This first point can usually be
satisfied in rain. The second requirement is that drop
counts in nonoverlapping volumes must be uncorrelated,
statistically independent, random variables (at any
length scale, i.e., no matter how far the unit sampling
volumes are separated). As we show below, this is
equivalent to requiring that the pair correlation be zero
at all lags. The third requirement for a Poissonian pro-
cess is that it be statistically stationary.

To elaborate further on the second requirement, when
we say that rain is correlated, we mean, in statistically
stationary conditions, that the presence of a drop en-
hances (or in some cases decreases) the likelihoods that
there are other drops of the same or different sizes in the
neighboring volume. In other words, the drop counts in

neighboring volumes are correlated, indicative of clus-
tering of the drops. (Here it is important to remember
that such correlations are also produced if the mean val-
ues change as functions of scales.) To be more precise,
the pair-correlation function h(l) measures the correla-
tion between the number of drops in neighboring volumes
separated at lag l (time or space) and is defined by

2[n(l)n(0) 2 m ]
h(l) 5 , (1)

2m

where n is the number of drops in a sample volume and
m is the mean number of drops across the entire mea-
surement space. As an example using real data, in Fig.
1 we illustrate R for two brief rain events using video-
disdrometer observations described in more detail in
Jameson et al. (1999, p. 83). The rainfall rates appear
to be nonstationary, but for the purpose of discussion
we first assume that the data are part of a much longer
term statistically stationary series. Later, we present ev-
idence suggesting the nonstationarity of these data.

For k, the total number of drops (summed ver all drop
sizes) in a unit sample volume, we then plot in Fig. 2
the quantity hk, the pair-correlation function for k. Here
we note that if the drops in each drop size category
contributing to the total number obey a Poisson process
(so-called Poissonian rain), then the sum of the number
of drops over all the different drop sizes also obeys a
Poisson process (e.g., Evans et al. 1993, p. 124). It is
obvious in Fig. 2 that the hk for the two rain events do
not correspond to a Poisson process, although the time
to decorrelation is much faster for the second, 773-s,
rain event. Note too that, had the measurements been
gathered using a temporal average of about 60 s during
the briefer rain, the distribution of k would have looked
to be Poisson even though the process is clearly not
Poissonian.

As just mentioned above, correlation between the
number of drops in neighboring volumes means that the
drops are not dispersed uniformly but rather tend to
occur in bunches. Locations rich in drops consequently
are interspersed with relative ‘‘holes’’ that are sparser
in rain so that the rain rates themselves must be clustered
[for further discussion see Jameson and Kostinski
(1999a), p. 3921 and p. 3931]. This distribution means
that one can define a pair-correlation function for the
rain rate, hR, that is analogous to that for k. The results
are illustrated for these two examples in Fig. 3. In clus-
tered rain, hR is zero only in passing, whereas hR is
precisely zero at all lags in Poissonian rain.

Thus, we see that all of the logic for rain being steady
as discussed above satisfies all three statistical require-
ments for a Poisson process. In particular we conclude
that Poissonian rain is steady rain and that for rain to
be steady it must be Poissonian and, therefore, both
statistically stationary and uncorrelated.

It is important to reemphasize here, however, that both
of these conditions must be satisfied. In particular just
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FIG. 1. The rain rates measured each second by the University of
Iowa video disdrometer during (a) a brief convective shower (mean
of 12.85 mm h21, variance of 292.7 mm2 h22) and (b) a more ex-
tended, less convective rain (mean of 3.54 mm h21, variance of 9.85
mm2 h22). From Jameson and Kostinski (1999a).

FIG. 2. The pair correlation for the total number of raindrops for
the two rain events in Fig. 1. For a Poisson distribution, hk 5 0 at
all lags not equal to 0 so that the observed rains are clustered.

being statistically stationary alone is not sufficient. That
is, statistical stationarity does not preclude significant
spatial variability because of the presence of correlated
fluctuations [see the discussion in the appendix in Ja-
meson and Kostinski (2000)]. On the other hand, sys-
tematic changes in the random variable alone over rel-
atively short distances (i.e., distances much less than a
correlation length) should not be construed necessarily
as a sign of statistical nonstationarity (i.e., data in which
the mean and variance of a random variable do change
throughout the set of data), because correlated fluctu-
ations over scales of less than the correlation length can

also produce apparent systematic changes, even in a
statistically stationary process, as illustrated in Fig. 4.

The lack of correlation in Poissonian rain has im-
portant consequences, in particular with regard to the
variance of R, because the variability is much larger in
clustered as opposed to Poissonian rain, as Fig. 4 il-
lustrates. A natural question, then, is whether some
knowledge about the variances and/or correlations is
sufficient for detecting reasonably steady rain without
even having to test directly for statistical stationarity,
which is a laborious process at best (see Jameson and
Kostinski 2000, appendix). The answer is ‘‘yes’’, as we
explore in the remainder of this work, beginning with
a stochastic definition of the rainfall rate described in
Jameson and Kostinski (2001a).

2. Relative dispersions and variances of rainfall
rates

The rainfall rate is defined by

k

3R 5 const 3 D V, (2)O i
i51

where Di is the diameter of the ith drop, V is the terminal
velocity corresponding to Di, k is the instantaneous total
random number of drops, const represents some con-
stant, and the summation is over a unit sample volume.
We may then consider the quantity Yi 5 V in (2) to3Di

be the random variable resulting from the transformation
of Di, and R is the random sum described by a random
total number of drops and random sizes.

It is argued extensively in Jameson and Kostinski
(2001a) that k and the probability density function (pdf)
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FIG. 3. The pair correlation for the rainfall rate for the two rain
events in Fig. 1. For Poissonian rain, hR 5 0 at all lags. The observed
rain events are not steady by Poissonian standards.

FIG. 4. Rain-rate profiles in statistically homogeneous correlated
and uncorrelated (Poissonian) rain plotted as a function of unitless
time. The horizontal line represents the mean for both kinds of sim-
ulated rain. Note the considerably larger fluctuations associated with
the correlated rain. From Jameson and Kostinski (1999a).

of drop diameters, p(D), are decoupled. They then derive
the expression for the relative dispersion of R to be

2 2 3 2s (R) E(k)F s (D V ) s (k)R5 1 1 , (3)
2 2 2 3 2[ ]E (R) s (k)E (D V ) E (k)

where E denotes the expected value, s2 is the variance,
and the factor FR 5 Ek[s2(R | k)]/[E(k)s2(D3V)] is in-
cluded to account for the observation that drops in such
a sum do not usually occur statistically independently.
Here, FR is equal to 1 when the drops occur statistically
independently, and FR is greater than 1 when the drops
are correlated. [For further discussion and explanation
of the development of this expression, please refer to
Jameson and Kostinski (2001a), 527–528.]

This concept can be expressed more clearly in terms
of the sums of the squares of the relative dispersions of
D3V and the total number of drops k by

2 2 3 2s F s (D V ) s (k)R R5 1 , (4)
2 2 3 2[ ]E (R) E(k) E (D V ) E (k)

where denotes the variance of R. Thus, the relative2s R

dispersion of R is governed by two terms, one arising
from p(D) and the second from the pdf of k. Notice too
that the relative dispersion arising from p(D) is inversely
weighted by the expected value of the total number of
drops in a sample so that this term can be ignored when
E(k) become very large (Jameson and Kostinski 1999a).

For the rain to be steady, it should be as statistically
stationary as possible, as discussed above. It turns out
that in statistically stationary rain the drop size distri-
bution itself is steady (Jameson and Kostinski 2001a,b).
As a consequence, in (4) the relative dispersion of (D3V)
is a constant in statistically stationary rain and we can,

instead, focus on the statistics of k. (Here it is important
to remember that a statistically ‘‘constant’’ rainfall rate
does indeed imply a constant or steady raindrop size
distribution, but a steady drop size distribution does not
imply that the rainfall rate is constant.)

Beginning with the most statistically uniform ex-
ample, we first consider the case when the sum of the
number of drops over all the different drop sizes obeys
a Poisson process as discussed earlier. If so, then s2(k)
5 E(k), FR 5 1, and (4) becomes

2 2 3s 1 s (D V ) 1P 5 1 , (5)
2 2 3[ ]E (R) E(k) E (D V ) E(k)

where the subscript P denotes Poissonian rain. For such
rain, the relative dispersion goes to 0 as the expected
value of the number of drops becomes very large.

On the other hand, in clustered, correlated rain, the
pdf of k sometimes appears to be well matched by the
geometric distribution (e.g., Jameson and Kostinski
1998, their Fig. 8, p. 289; Jameson et al. 1999, their
Fig. 2, p. 85) characterized by a long tail extending to
large k and increasing probabilities as k approaches 0.
Because the variance for such a distribution is given by
E(k) 1 E 2(k), after substitution and collection of terms
(4) becomes

2 2 3 2s (F 2 1) s (D V ) sR R P5 1 1 1. (6)
2 2 3 2[ ]E (R) E(k) E (D V ) E (R)

As a consequence, as E(k) goes to `, /[E 2(R)] ap-2s R

proaches 1 no matter how many drops there are.
As another example and depending upon the size of

the measurement volume, the distribution of drop counts
at other times may be described aptly by the negative
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FIG. 5. The relative dispersions of the rainfall rate for three different
distributions of the total number of drops k, specified in the legend,
as functions of the expected total number of drops E(k). The mean
rainfall rates and drop size distributions are identical in all three cases.
Here, FR 5 1 for the Poissonian rain, but it is set to an arbitrary but
realistic value of 1.5 in the other two examples in this figure to account
for drop correlations normally associated with the appearance of such
distributions of k.

FIG. 6. The observed and average (see text) pair-correlation func-
tions of the total number of drops for the (a) 201-s rain event and
(b) 773-s rain event as a function of lag (for hk) and interval size
(for k) as discussed in the text.h

binomial distribution (Kostinski and Jameson 1997,
their Fig. 12, p. 2184; Jameson et al. 1999, their Fig.
8, p. 89). For such a distribution of k, the variance is
given by E(k) 1 E 2(k)/m, where m is an integer-valued
shape parameter such that, as m goes to `, the distri-
bution approaches the Poisson. The relative dispersion
is then given by

2 2 3 2s (F 2 1) s (D V ) s 1R R P5 1 1 . (7)
2 2 3 2[ ]E (R) E(k) E (D V ) E (R) m

All of these results just discussed are illustrated in Fig. 5.
In statistically stationary rain, however, (4) can be

expressed even more generally, because there is an equa-
tion that relates the variance of counts in a given volume
to the pair-correlation function integrated over the same
volume. This fact makes qualitative sense, because clus-
tering acts to increase the variance (as, for example, Fig.
4 illustrates) beyond that expected when there is no
correlation and Poisson statistics rule. As a conse-
quence, the larger the average value of the correlation
function in a sample domain is, the greater the clustering
and, therefore, the variance are.

This insight was given precise meaning by Ornstein
and Zernike (1914) who were investigating X-ray scat-
tering by liquids near the critical density for opales-
cence. Their expression can be written as

2s (k) 1 1
2 5 h(y9) dy9 5 h , (8)E k2E (k) E(k) V V

where h is the pair-correlation function, k is the total

number of particles in volume V, is the variance of2s k

k, E(k) is the expectation value of k, and k is the av-h
erage of h over V. As Kostinski and Shaw (2001) point
out, this result is general in so far as its derivation re-
quires no physical mechanisms (see Landau and Lifshitz
1980). In particular, as long as the rain is statistically
stationary, the distribution of drop sizes, p(D), is steady,
and the total number of drops impinging a unit surface
in time interval t is the same as the total number of
drops in volume 3 t, where is the mean terminalV VD D

drop velocity averaged over p(D). Thus, transforming
variables, we may write

t2s (k) 1 1
2 5 h(t9) dt9 5 h , (9)E k2E (k) E(k) t 0

where k is the total number of drops counted over t.
First, we note that h can be negative but bounded at

21 when there is perfect anticorrelation (Kostinski and
Shaw 2001). Moreover, in the limiting case of no cor-
relation, h(t9) 5 0 so that we recover the Poisson re-
lation s2(k) 5 E(k). Second, the integral on the right-
hand side implies that the variance on the left-hand side
‘‘remembers’’ the pair correlations (clustering) at all
scales less than the interval size. Last, k obviouslyh
depends on t. As a consequence, so does s2(k)/E 2(k).
That is, the observed variance will depend upon the
sample resolution. This dependence is discussed further
below.

As an example, in Fig. 6 we compare k to hk, cor-h
responding to Fig. 2. From (9), it is obvious that the
variance of k at smaller scales is carried over into mea-
surements at larger scales via k, thereby affecting theh
variance of R. That is, rearranging and inserting (9) into
(4) and combining terms, we have simply that
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FIG. 7. The observed variances of the rainfall rate as functions of
the size of the observation interval for the (a) 201-s rain event and
(b) 773-s event calculated using (10) and the observed and for anh
equivalent Poissonian rain (see text). While the variances for the
Poissonian rain quickly become negligible, the observed variances
in clustered rain are strong functions of the interval resolution.

FIG. 8. The variances calculated for the two rain events using (10)
based upon the assumption that the rain is statistically homogeneous
compared with the variances actually observed as functions of the
size of the observation interval. The enhancement of the observed
variances can be attributed to statistical nonstationarity of the data,
particularly at larger scales. The bars denote 61 standard error of
the observed variances.

2 3(F 2 1) s (D V )R2 2 2s 5 s 1 E (R) h 1 . (10)R P k 2 35 6[ ]E(k) E (D V )

If the rain were Poissonian, then the pair correlation is
zero at all scales, FR 5 1, and goes to . On the2 2s sR P

other hand, if the rain is correlated (clustered), then the
variance is enhanced by the bracketed term in (10) 3
E 2(R). Data show, however, that the D3V term is usually
a very small fraction of the total variance, particularly
as E(k) becomes substantial. Therefore, simplifying
(10), we have

2 2 2s ù s 1 E (R)hR P k (11)

to a very good approximation.
As (9) indicates, however, k does depend upon theh

size of the measurement interval. As an example, we
again return to the time-series video-disdrometer data
presented in Fig. 1. Assuming that the data were sta-
tistically stationary (more on that below), we use (10)
to compute as a function of t. Using (5), we also2s R

compute as if the rain were Poissonian, that is, for2s P

the same E(R) and p(D) but with hk 5 0. The results
are shown in Fig. 7. It is obvious that decreases for2s R

both Poissonian rain and the observed rain as t increases.
However, because of drop correlations, the decrease
with increasing t is much slower in the actual rain than
in the Poissonian rain. Nevertheless, in both cases and
at sufficiently large values of t, even clustered, corre-
lated rain may appear to have Poissonian variance or
even variances smaller than Poissonian simply because
t is too large to ‘‘see’’ the clustering anymore. It con-
sequently is important to remember that the determi-
nation of whether the rain rate is steady will also depend,
in part, upon the resolution of the observations.

Here, it is also appropriate to recall that rain, of course,
need not be statistically stationary. Statistical nonstation-

arity, perhaps through some randomness of the mean val-
ues, apparently acts to increase the variances of k, of
D3V, and, therefore, of R. This effect is illustrated in Fig.
8 in which the variances actually observed at the indi-
cated resolutions [rather than the values estimated using
(10) as in Fig. 7] are generally greater than those antic-
ipated had the rain been statistically stationary.

3. Conclusions

Because both drop clustering, as (11) indicates, and
statistical nonstationarity act to increase the variance
above that for Poissonian rain, it is, therefore, reason-
able to use Poissonian rain as the standard for steady
rain as originally suggested in Kostinski and Jameson
(1999). Although pure Poissonian rain is likely to be
rare, if indeed it exists at all, the concept of Poissonian
rain is still very useful because it provides us with a
means of precisely quantifying the steadiness of any
particular rain event. One can then simply compare the
variance of R actually observed with that anticipated
had the rain been Poissonian. This comparison is useful
because, when the rainfall rate is as constant as statistics
allows, there is also an accompanying constant drop size
distribution. However, how does one identify a constant
rainfall rate in practice?

The answer depends, in part, on just what measure-
ments are available. If one has access only to a time or
spatial series of measurements of R, then the behavior
of hR can be used as a discriminator because in Pois-
sonian rain hR is 0 at all lags. If, on the other hand, one
has access to times-series disdrometer observations, one
can compute hk instead. However, one has to be careful
because, if k is observed using too coarse a resolution,
clustering may still exist but simply may not appear in
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FIG. 9. The observed rainfall rates for the (a) 201-s rain event (b)
773-s event compared with those expected for Monte Carlo simu-
lations of Poissonian rain having the same mean rainfall rate as dis-
cussed in the text. Although the second rain is much steadier, neither
event strictly satisfies the Poissonian criterion for steady rain given
that / 5 13.9 and 4.1 for (a) and (b), respectively.2 2s sR P

hk, as just discussed and as illustrated in Fig. 8 and in
the appendix of Kostinski and Jameson (2000). (The
same comment also applies to hR.) One other difficulty
with these two approaches is that they hedge the ques-
tion of what one does with weakly correlated rain that
appears to be almost but not quite Poissonian. How
nearly Poissonian are they? Can a quantitative value be
assigned?

The answer is yes. One approach is to use a more
direct method by noting that, in Poissonian rain, the
distribution of the total number of drops is also Poisson
distributed at all scales. Then, s2(k) 5 E(k). As a con-
sequence, whenever s2(k) k E(k), the rain is not likely
to be steady. Deviations of the ratio s2(k)/E(k) from
unity then can be used as quantitative measures of
steadiness.

A more satisfying approach, however, is to use the
rainfall rate itself. If the expected number of drops at
each size category is measured, one can simply use a
Poisson random number generator to create time series
having the mean values appropriate to each size bin
(making certain that the generator is initialized differ-
ently for each drop size to eliminate correlations). These
time series then can be combined to create the Monte
Carlo simulation of the rainfall rate that automatically
includes the observed distribution of drop sizes. Then,
not only can the variance of the simulated time series
be compared with the variance actually observed, but
the time series can be compared visually with the ob-
servations. For example, the observed are 292.7 and2s R

9.85 mm2 h22 for the 201- and 773-s video-disdrometer
observations, respectively. The corresponding Poisson-
ian values are 21 and 2.38 mm2 h22, respectively. Thus,
the ratios of the observed variances to the Poisson var-
iances are approximately 14 and 4, respectively, so that
neither could be classified as really steady rain. This

result is apparent when the Poissonian simulated and
actual time series of the rainfall rates are compared, as
illustrated in Fig. 9. Although one certainly could argue
that the longer time series is more than 3 times steadier
than the first, neither appears to be truly steady.

Even in the absence of any direct measurements of
R, it may, at times, even be possible to use remote
sensing devices such as radar, for example, at least to
exclude those regions where the rain is not steady. In
such locations, as the radar scans, readily detectable
non-Rayleigh signal statistics of the radar reflectivity
factor will appear, depending upon the scan rate and
radar beam dimension [for further discussion see Ja-
meson and Kostinski (1996, 1999b)]. Those regions in
which the signal statistics of Z remain Rayleigh even
though the antenna is moving are at least reasonable
candidate locations of steady rain worthy of further at-
tention.

To return to Sauvageot and Koffi (2000), it is now
apparent that the limit of 0.2 mm h21 offered as an upper
limit for statistical fluctuations is likely too restrictive.
To be specific, (5) implies that the absolute minimum

occurs when the distribution of drops is mono-2s P

disperse. In that case sP | min 5 E(R)/ . Based uponÏE(k)
the information provided in Sauvageot and Koffi (2000),
it appears that more realistic values of sP | min range from
0.24 to 3.91 mm h21, particularly given that their dis-
tributions are actually considerably broader than mono-
disperse.

But what is important here, however, is that there is
now a means of quantifying steadiness precisely. This
fact is important because steady rain has some unique
and useful properties. To be specific, because steady rain
is statistically stationary, the associated drop size dis-
tributions have physical, deterministic meanings inde-
pendent of the measurement process (Jameson and Kos-
tinski 2001a,b). Furthermore, because such rain is Pois-
sonian, convergence to the drop size distribution is rap-
id. Moreover, the relations between the rainfall rate and
the radar reflectivity factor, for example, are physical
and linear (Jameson and Kostinski 2001a). Each Z con-
sequently is uniquely related to each R without the sta-
tistical uncertainity associated with Z–R correlation
power laws that apply in statistically nonstationary rain
(Jameson and Kostinski 2001a).
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