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Abstract

It was shown in recent work that spatial correlations among obstacles of a random,
absorbing medium can lead to slower-than-exponential (sub-exponential) extinction
of radiation with propagation distance. Exponential decay, described by the Beer-
Lambert law, arises in a special case when the medium contains no correlations.
A third possibility, examined here, is that of negative correlations which can lead
to faster-than-exponential (super-exponential) extinction. Using a Monte Carlo ap-
proach, we confirm that sub-exponential decay occurs when the volume-averaged
pair correlation function is greater than zero at the scale of interest and that the
Beer-Lambert law is recovered when correlations vanish. We also find that when the
volume-averaged pair correlation function is negative, super-exponential extinction
with propagation distance occurs. These results are of special interest to the prob-
lem of radiative transfer in cloudy atmospheres, where the pair correlation function
previously has been shown to be negative and positive at different scales.
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1 Introduction

Exponential decay is ubiquitous in nature. A prominent example is the Beer-
Lambert law describing the exponential attenuation of radiation in a homoge-
neous random medium. Indeed, this law is of central importance in fields such
as atmospheric radiative transfer. There are certain physical scenarios, how-
ever, where deviations from the Beer-Lambert law are possible — Specifically,
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Kostinski [1] showed theoretically that correlations in the positions of particles
in a random medium can lead to slower-than-exponential (sub-exponential)
extinction of intensity with propagation depth. While related results were ob-
tained earlier by others (e.g., [2, 3, 4, 5, 6, 7]), the framework introduced in
[1], namely that of the Poisson process and pair correlation function from the
fundamental theory of stochastic processes, is especially convenient for further
exploration of this phenomenon.

In particular, the possibility of sub-exponential extinction of radiation in a
positively-correlated medium leads us to ask, how do negative correlations af-

fect light extinction? The approach introduced in [1] allows us to examine this
question, if not analytically as in the original work, then computationally. In-
deed, the pair correlation method is ideally suited for use in a Monte Carlo
model and that is the approach taken here. For example, we consider the at-
tenuation of radiation in a medium consisting of perfectly absorbing particles.
Holding the mean number density n and cross section σ of particles constant,
we explore the effect of correlations (both positive and negative) in particle
position on the intensity attenuation rate.

Practical applications might include radiative transfer in atmospheric clouds,
where particles positions are observed to be correlated both negatively and
positively [8]. For example, a turbulent mixing zone characterized by a −5/3
scalar spectrum may possess strong positive correlations in particle position.
On the other hand, sedimenting particles in a laminar fluid possess strong neg-
ative correlations in particle position [9], and an atmospheric example might
be droplets in a calm fog. It also is a simple matter to conceive of macroscopic
cloud geometries that would possess either negative or positive correlations
(e.g., cellular convection versus −5/3 turbulence).

Given this motivation, the aim of the present paper is to: 1) extend the orig-
inal argument in [1] and argue that unlike earlier work (e.g., see [1, 2, 3, 4,
5, 6, 7] negative spatial correlations reverse the effect and yield faster-than-
exponential extinction; 2) present Monte Carlo simulations which confirm the-
oretical conclusions for both positive and negative spatial correlations.

2 Extinction in a negatively-correlated medium: Theory

To begin with, we consider a random medium consisting of absorbing particles.
To obtain deviations from the Beer-Lambert law, it is necessary to introduce
correlations among positions of particles in the medium. However, unlike the
cases previously considered, these correlations are negative so that particles
are less likely to be near each other than in the case of the Poisson process.
Note that, in spite of correlations, the distribution of particles is still regarded
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as statistically homogeneous so that all moments (e.g., mean and variance) are
invariant with respect to the shift of origin. Examples of spatially correlated
particle distributions are shown in Fig. 1, which will be discussed in more detail
in Sec. 3. Briefly, the left panel shows negatively-correlated particle positions,
the middle panel shows uncorrelated particle positions for reference, and the
right panel shows positively-correlated particle positions.

For the radiation extinction problem we must consider two “countable” ran-
dom variables: the number of particles or obstacles k, and the number of
photon absorption events n. To characterize the degree of spatial correlation
between particles we consider two volume elements dV1 and dV2 that are suf-
ficiently small so that they can contain either 0 or 1 obstacles only and the
probability of containing 2 or more particles is negligible. Because the volume
elements are small, the average number of particles k̄dV is also the probability

that a particle is in the volume element dV . Then, for a statistically homoge-

neous random field, the joint probability P (1, 2) of finding a particle in each
of the two volumes dV1 and dV2 is

P (1, 2) = k̄2dV1dV2[1 + η(r)], (1)

where k̄dV is the probability of finding a particle in dV, η(r) is the pair
correlation function and r is the separation distance between two volumes
(statistical isotropy is implied by η = η(r)).

We see from Eq. (1) that the assumption of statistical independence of counts
in non-overlapping volumes implies η(r) = 0 because only in this case is
the joint probability simply a product of the individual ones. However, in the
presence of correlations, the conditional probability of finding the 2nd particle,
given that the first one is there, is enhanced or inhibited by a factor of (1+η).
In this work, our focus is on the second possibility.

As was discussed in previous work [1], there is a relationship between the vari-
ance of particle counts in a fixed sampling volume and the spatial correlation
of particles. It is given by:

(δK)2

K̄
− 1 =

K̄

V

∫

V

ηdV, (2)

where as in Eq. (1), η is the pair correlation function between particle counts
in volumes V1 and V2 within V , δK ≡ K − K̄ is the deviation from the
mean count in a given volume V and K̄ = k̄V where k̄ is the local mean
concentration.
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After multiplying both sides of Eq. (2) by K̄ and rearranging we obtain

(δK)2 = K̄ + η̄K̄2, (3)

where η̄ = V −1
∫

V ηdV is the volume-averaged pair correlation function. In
the Poissonian case, η = η̄ = 0, and this gives the well-known result that
(δK)2 = K̄ for a Poisson distribution. In this paper we ask: what are the effects
of negative correlations on the extinction? For example, η < 0 might result
from a form of particle “repulsion”. Then it is possible to have η̄ < 0, which is
accompanied by sub-Poissonian variance in Eq. (3). Indeed, a constraint on η̄
can be derived from the fact that variance must be non-negative: ((δK)2 ≥ 0)
yields

η̄ ≥ −
1

K̄
. (4)

The implication is that η̄ < 0 is allowable at all scales and, therefore, the
variance in extinction events can be smaller than expected for an uncorrelated
medium.

In [1] it was argued that variance of particle counts is related to the rate of ex-
tinction of radiation. As a specific example, super-Poissonian variance arising
when η̄ > 0 was shown to result in slower-than-exponential extinction. Here,
we argue that sub-Poissonian variance of obstacle number yields faster-than-
exponential attenuation. To that end, we recall the relevance of the Poisson
process to the Beer-Lambert law of exponential extinction. We assume perfect
randomness in the distribution of obstacles so that the number of absorbed
photons obeys the Poisson distribution:

pn(x) =
n(x)

n
exp(−n(x))

n!
, (5)

where n is the random number of absorbed photons in the test volume per unit
time, pn(x) is a probability of having n photons absorbed in a given volume
of a layer of depth x, and n(x) is the mean count over many realizations as a
function of the depth x into the slab.

Next, we consider the photon probability of transmission (no extinction) through
the layer of depth x. That is, we need to find p0(x) from Eq. (5) by setting
n = 0 (n̄ held constant). We obtain:

p0(x) = e−n(x) = e−x/λ, (6)

where λ−1 = σk̄ with λ, σ and k̄ being the mean free path, extinction cross-
section per obstacle, and obstacle concentration, respectively. Now, using the

4



law of large numbers to interpret p0(x), we can rewrite Eq. (6) as

Ntr

Ninc.

= e−x/λ, (7)

which is the stochastic equivalent of the Beer-Lambert law. Here, Ninc and Ntr

stand for the (large) number of incident and transmitted photons, respectively
and x/λ is the unitless optical depth.

In Eq. (5) we used the fact that the number of absorbed photons (at a given
location) is Poisson distributed because the number of obstacles is Poisson
distributed. If, however, the number of obstacles is not Poisson-distributed,
then pn(x) will also change. For example, if the variance in the number of
obstacles decreases, so does the variance in the number of absorbed photons
n. This means that the distribution p(n) gets narrower (only ‘well-behaved’
densities are considered for the moment). Qualitatively, we expect that p(0)
will decrease as well because a narrower pdf will have ‘lower tails’. Therefore, at
a fixed mean free path, the numerical value of the narrow (sub-Poissonian) pdf
produces lower p(0) than does the Poissonian case. Furthermore, the argument
holds at any n̄ which, in turn, depends linearly on x, penetration distance
into the medium. Hence, we conclude that negative correlations yield faster-
than-exponential extinction. That this is indeed so is confirmed by evidence
obtained from direct and simple Monte Carlo simulations described in the
next section.

3 Monte Carlo model and results

To test the theory outlined in the previous section, we built a straightforward
Monte Carlo model that performs two functions. First, the model generates a
random distribution of particle positions, which may be spatially correlated:
this gives us variable k. Second, the model calculates a distribution of photon
absorption events by “shooting” photons through the distribution of particles:
this gives us variable n. We will consider these two functions in turn.

Three different types of particle distributions are shown in Fig. 1. Each panel
is a thin slice (slice thickness is 1/10th the width shown) taken from one real-
ization of particle positions generated by the model. The middle panel shows
particle positions that are uncorrelated at all scales, or Poisson distributed.
The Poisson distribution is made by selecting each particle’s coordinate inde-
pendently and at random from a uniform pdf. Thus each particle’s position
is uncorrelated with that of any other. The left panel shows particle positions
that are negatively correlated over a wide range of scales. Negatively corre-
lated distributions can be made by randomly selecting particle positions inside
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Negative Correlations Poisson Positive Correlations

Fig. 1. Thin slices (slice thickness is 1/10th the width shown), with n and σ the
same in all cases, showing particle positions in typical realizations of the Monte Carlo
model. Note that in all three panels the box width is equal to one free path, defined
as 1/nσ. The first panel corresponds to negatively correlated particle positions,
achieved by specifying an “excluded volume” of approximately 0.8λ. The second
panel is for a completely uncorrelated medium, i.e., Poisson process. The third panel
is for positively correlated particle positions, achieved via an exponential conditional
probability of particle position.

the box, but rejecting any position that is less than a specified distance away
from any other previously placed particle. For the simulations described here,
this “excluded volume” distance was r◦ = 0.83k̄−1/3, or 0.083 times the width
of the panel shown in Fig. 1. We use periodic boundary conditions to ensure
that the particles do not accumulate near the edges of the box. Because this
technique involves comparing each newly placed particle to all the previous
ones, it is more computationally efficient to average several smaller volumes
rather than one containing many particles. The right panel of Fig. 1 shows
positively-correlated particle positions. Positive correlations can be achieved
by using a biased pdf to select a random distance from the most recently
placed particle to the next particle’s location. The first particle is placed at
random. In these simulations we used an exponential probability distribution
with a mean step size in each direction of 0.5k̄−1/3, or 0.05 times the width of
the panel shown in Fig. 1. Again, periodic boundary conditions were employed
so that if a particle were to step outside of the box, it would be brought back
in through the opposite side.

The scale-dependence of spatial correlations between particles is found by
calculating the pair correlation function η(r), where r is the radial distance
from one particle to another. For many realizations of the distributions in
Fig. 1, we obtain the η(r) curves shown in Fig. 2. The solid line corresponds
to the Poisson-distributed particles and, as expected, η(r) = 0 for all r. The
dot-dashed line is for the positively-correlated model described previously and,
indeed, confirms that η(r) ≥ 0 for all r. The dashed line is for the “excluded-
volume” model described previously, and clearly shows η(r) = −1 for r ≤ r◦.
The positive spike near r = 0.1 is a result of particles “piling up” outside of
the excluded volume, as would be expected for a near-densely-packed system.
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Fig. 2. The pair correlation function plotted as a function of spatial scale calculated
directly from particle positions generated by the Monte Carlo model. The solid
curve corresponding to no correlations shows η(r) = 0 at all scales, as expected.
The dot-dashed curve corresponding to the positively correlated medium shows
strongly increasing η(r) with decreasing r; Note that η(r) > 0 for all r. The dashed
curve corresponding to the negatively correlated medium shows η(r) = −1 for r ≤ d,
the effective particle diameter; Note that the positive fluctuations at r > d do not
cancel the the negative contribution when integrated to give η(r).

It is important to note, however, that the volume-averaged pair correlation
function η(r) is negative at all scales so that the arguments associated with
Eq. (3) still hold.

Once a particle distribution is generated, the extinction of radiation is calcu-
lated by shooting photons through the volume and keeping track of the number
of photons remaining as a function of propagation depth x. Since the incident
radiation is assumed to be incoherent, it could be represented by randomly
positioned photons travelling along straight trajectories, all parallel to each
other, until one passes through a particle and an absorption event occurs. All
particles (obstacles) were assumed to be perfectly absorbing, so no scattering
or re-emission needed to be considered. In addition, all particles were assumed
to have the same absorption cross section, σ. Therefore, a photon was removed
form the simulation if it passed a distance (σ/π)1/2 from a particle center.

All three particle distributions had an average particle density, k̄, of 1000 par-
ticles per unit volume. The value of σ was then chosen to be 10−3 so that the
optical depth, λ = σk̄ would be unity. The box was chosen to have dimensions
of 1x1x4. For each distribution, 106 randomly positioned photons were sent
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Fig. 3. Relative intensity plotted as a function of propagation depth, calculated
with the Monte Carlo model described in the text. The middle curve (solid) is for
the uncorrelated medium and is identical to that expected from the Beer-Lambert
law. The top curve (dot-dashed), representing slower-than-exponential decay, is
for the positively correlated medium. The bottom curve (dashed), representing
faster-than-exponential decay, is for the negatively correlated medium.

into the particle cloud parallel to the long direction of the box. “Measure-
ments” of the number of photons that were not absorbed were made at one
hundred evenly spaced points along the box. Fifty of such simulations were
then averaged to yield the extinction rate. Similar averaging could have been
performed by increasing n and decreasing σ in such a manner as to keep their
product constant, or by increasing the width of the box. As mentioned pre-
viously, it is computationally easier to generate smaller distributions. Finally,
we note that because a particle outside the box could still potentially absorb
photons that are within a distance (σ/π)1/2 of one of the walls, all photons
were kept this distance away from the walls. Alternatively, periodic boundary
conditions could be placed on the box to enable a particle centered near one
wall of the box to absorb photons near the opposite wall.

Results for the three particle distributions are shown in Fig. 3, where the
logarithm of relative intensity I/I◦ is plotted against propagation distance
normalized by the mean free path x/λ. The line types are as in Fig. 2, solid
for the Poisson-distributed particles, dot-dashed for the positively correlated
particles, and dashed for the negatively-correlated particles. Lack of spatial
correlations faithfully reproduces the exponential decay predicted by the Beer-
Lambert law, with λ−1 = k̄σ. Extinction of radiation propagating through the
positively-correlated particle distribution is significantly slower than the Beer-
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Lambert law would predict. Given that the pair correlation function shown in
Fig. 2 for this particle distribution suggests a maximum 40% deviation from
the uncorrelated case, it is quite striking to see this magnitude of deviation
from the Beer-Lambert law. Finally, the model confirms that for negatively-
correlated particle positions (more precisely, for η̄ < 0) the rate of extinction
of radiation is faster than expected from the Beer-Lambert law.

While the extinction rate shown in Fig. 3 for the negatively-correlated parti-
cle distribution is faster than the expected rate based on the particle number
density and cross section, further examination reveals that after a transient
regime the extinction rate does, in fact, approach negative exponential (e.g.,
it is a straight line in Fig. 3). This transition to exponential decay with a
modified optical depth λ∗ < λ, occurs at approximately the same spatial scale
where η(x) approaches zero. In fact, a similar approach to exponential extinc-
tion, but with a modified optical depth λ∗ > λ, occurs for positively-correlated
particle positions characterized by a “short-range” pair correlation function.
Here, short-range refers to a sufficiently rapid decay of η so that η(x)→ 0 at
some observable x, unlike the example shown in Fig. 3. Qualitatively, the final
exponential extinction with an “effective” cross-section results when all scales
with non-zero correlation are averaged over for long photon paths. Quantita-
tive description of this will be the subject of future work, but we conjecture
here that the “effective” optical depth λ∗ has a functional dependence on
the integral of the pair correlation function, H ≡

∫ x
0 η(x′)dx′. We note that

H → C, where C is a constant, when η(x) → 0, so that we might expect
a dependence such as λ∗ ∝ λ (1 + αH), where α may have some functional
dependence on σ, k̄, etc.

4 Concluding Remarks

The work presented here builds on recent work [1] showing that deviations
from perfect randomness in spatial positions of obstacles constituting a ran-
dom medium yield departures from the Beer-Lambert law of exponential ex-
tinction with propagation distance. For example, in [1] it was argued that
super-Poissonian variance yields slower-than-exponential extinction, but nei-
ther experimental nor computational confirmation was offered. In addition, the
possibility of negative spatial correlations among particles was not explicitly
considered. In this paper we extended the original argument to show that nega-
tive spatial correlations reverse the trend and result in faster-than-exponential
extinction of radiation. Monte Carlo simulations confirm the theoretical calcu-
lations in both regimes, showing strong sub-exponential extinction for a pos-
itively correlated medium and super-exponential extinction for a negatively
correlated medium. As expected, the Monte Carlo simulations reproduce the
Beer-Lambert law when correlations are absent. Finally, we have speculated
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on the emergence of a modified exponential attenuation regime valid in cases
of “short-range” pair correlations. Future work is focused on demonstrating
non-exponential extinction in a laboratory experiment.
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