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Phase signature for particle detection with digital
in-line holography
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The spatial phase resulting from the digital reconstruction of an in-line hologram of a particle field is shown
to yield a unique pattern that can be used for particle detection. This phase signature is present only when
viewed along with the reference light. The existence of the phase pattern is verified computationally and
confirmed in laboratory experiments with holograms of calibrated glass spheres. The phase signature pro-
vides an alternative to the widely used intensity method for particle detection. © 2006 Optical Society of

America
OCIS codes: 090.0090, 120.3940.

Digital in-line holography, because of its simplicity in
optical configuration and fast processing via digital
recorder and computer, has generated much interest
in three-dimensional particle image velocimetry™?
and the study of three-dimensional particle spatial
distributions.? In these fields, the first step usually is
the extraction of the spatial distribution of small par-
ticles in a three-dimensional volume. Typically, the
forward-scattered light from a group of small par-
ticles, such as water droplets in clouds or seeding
particles in a fluid, are initially recorded on a CCD
camera by the in-line holography method, and then
the forward-scattered light field is reconstructed nu-
merically by filtering off the reference light (dc com-
ponent of the hologram’s Fourier transform) and ne-
glecting the twin images of the particles. Most
particle detection algorithms have been based on
various features of the scattered field amplitude or
intensity, whose spikes then suggest the presence of
particles.*”” In practice, the spikes from the particles
are distinguished from those due to noise by setting a
threshold.

In this Letter we deviate from the traditional pro-
cessing in two ways: (i) the reference light is kept
(not filtered off), and (ii) rather than using amplitude
or intensity we rely on the spatial phase. This spatial
phase is that of the whole light field, not just of the
scattered field, and is proposed here as an alternative
for detecting particles.

It is important to note that this spatial-phase sig-
nature of the entire light field is not associated with
(transparent) phase objects, the latter being the sub-
ject of a vast literature even within holography (e.g.,
see Vikram’s text, especially Sec. 5.9, and references
therein). Our phase signature is based on the opaque
disk diffraction approach, whose adequacy, even for
transparent objects, has been demonstrated in many
holographic studies.”'® Qualitatively, the focal length
of the particle lens, say a water droplet, is of the or-
der of its diameter d so that the subsequent spread-
ing angle of this refracted light beyond the focal point
is rather large [6.~tan '(d/2d)~1], whereas the
spreading angle of the disk-diffracted light is consid-
erably smaller (6;~\/d<1). Hence a distant CCD
array records mostly the latter (except, perhaps, in
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large-numerical-aperture applications such as micro-
scopic imaging).

The typical digital in-line holographic configura-
tion contains only collimating optics and a CCD that
will record the interference intensity pattern be-
tween the collimated on-axis reference light and the
forward-scattering light from the particles. The gen-
eral principle for hologram recording and reconstruc-
tion can be found in, for example, Goodman’s text,11
and it has been adopted by many authors'? for digital
recording and reconstruction. For clarity, we will use
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Fig. 1. (Color online) Phase signature reconstructed from

a simulated hologram. (a) Spatial phase variation (within
an axial plane through the center of the opaque disk) of the
reconstructed field based on a simulated hologram. (b)
Comparison of the axial phase reconstruction (solid line)
with the 1/z decay predicted by Eq. (2) (dashed curve). It
can be seen that the finite size effects of the pixels and CCD
chip prevent the phase from following the 1/z dependence
near the opaque disk, and the basic phase signature re-
mains conspicuous and robust.
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the continuous function representation. Given a lin-
ear recording of the in-line hologram with a normal-
ized plane reference beam (amplitude normalized to
1), the light intensity I(x,y,z,) recorded on the CCD
plane (x,y) located at zo can be described as'!
I(x,y, zo) l+a,, (x,y)+a, (x,y)+|a20(x,y )|?, where a
and o” are the scattered wave and its conjugate, re-
spectively. Within the Fresnel approximation, and
treating the scatterlng from a small particle as that
from an opaque disk,® the scattered field a, (x,y) can
be written as a, (x,y)= ao(x,y)®h (x,yg where
eyl =ha0) ! explj(R/220) @457, ag(x ) is the
transmission function of the object at z=0 with
ao(x,y)=-1 within the disk and 0 outside the disk, ®
denotes convolution operation, and A and %2 denote
the wavelength and corresponding wave number, re-
spectively. The reconstructed complex whole field
E,(x,y) at an interrogation plane of distance z, which
is E,(x,y)=I(x,y,z¢)Qh, _Zo(x,y), by neglecting the
weak contribution from the twin image a and scat-
tered field intensity |a,, | can be approx1mated as

E,(x,y) = 1+ ao(x,y) ® h,(x,y). (1)

Equation (1) will serve as the basis for interpreting
the reconstruction results, and we note that the ref-
erence light will not be filtered out.

Given the form of ay(x,y), the on-axis field values
of the reconstructed whole field E,(r=0) in cylindrical
coordinates is

2
E,(0)=1- —f f exp( —r )rdﬁdr
J\z

~ o/ (Ulz) — emS(Z), (2)

where ¢(z) ~z! is the axial phase, /= nr3/\ and ry is
the opaque disk radius. Given that z is the axial dis-
tance from the particle, Eq. (2) describes a unique
phase signature: a 1/z singularity near the particle,
followed by a change of sign (phase flip) at the disk
position and subsequent decay beyond the disk. A de-
tailed computation based on Eq. (1) confirms this
axial-phase signature and also shows that, laterally,
there is a narrow phase wake behind and ahead of
the particle confined to roughly +r, in the radial di-
rection.

However, the finite sizes of the recording pixels and
array of the CCD camera will limit the bandwidth of
the digital in-line holographic system in recording
and  reconstruction.'”> Therefore the sharp
axial-phase rise (or decay) predicted by Eq. (2) will be
saturated because of the resolution limited by the
pixel size and the array size (or CCD aperture size).
To estimate the saturated value, we observe that the
lateral phase variation within the region (0,r() (the
reference light field is not perturbed strongly outside
at lateral distances r>rg so that ¢=0 there) is well
approximated by a linear function. Then, as required
by the sampling theorem, the reconstructed axial
phase value would not exceed ~2m(ry/2p), where p is
the local spatial resolution. If the local spatial reso-
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lution is limited by the pixel size A, implying p=A,
then the axial phase is estimated to saturate near

¢1=m(ro/A). 3)

Similarly, if the local spatial resolution is limited by
diffraction from the CCD aperture with size D, im-
plying p=\(z9—z)/D, and our concern is with the
axial phase in the vicinity of the opaque disk (z¢-z
~2zy), then the reconstructed axial phase is estimated
to saturate near

¢y = m(roD/Nzy). 4)

Ultimately, the ¢(z) saturation value is determined
by the smaller of ¢; and ¢y, hereafter denoted
min{¢y, ¢y}, with the latter depending on the system
parameter combination ¢y/dp=AD/N\z, (provided
that the particle is resolved, i.e., 2ry=p).

Figure 1 displays the particle phase signature re-
constructed from a simulated hologram. It can be
seen that the phase flip does occur at the opaque disk
location as predicted by Eq. (2) and that the axial
phase does saturate at values predicted by Eqgs. (3)
and (4). The parameters used in this simulation were
chosen to match the laboratory data, presented in the
next paragraph: r,=20 um, =774 mm, A
=4.65 um, A\=632.8 nm, and D=2.3 mm. These pa-
rameters yield ¢;=13.5 rad.
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Fig. 2. (Color online) Phase signature reconstructed from

experimental in-line holographic data. (a) Reconstructed
spatial phase variation within an axial cross-section
through the center of the glass sphere. (b) Reconstructed
phase signature along the central axis through the particle.
A close agreement of the spatial phase features with those
of the simulation shown in Fig. 1 is observed. The recon-
struction is based on the same array size and interrogation
plane spacing as those for the simulation.



To disentangle fundamental optics from the nu-
merical artifacts of phase unwrapping, we deliber-
ately chose the CCD array size as 500X 500 so that
$9=3.0 rad (<m). Hence min{¢;, ¢} is due to the dif-
fraction from the finite CCD aperture. The spacing
between the interrogation planes is 80 um. The
maximum of the reconstructed phase in Fig. 1 is
about 3.0 rad, which agrees with the predicted value
for min{¢;, ¢y}.

To test the above theoretical and computational re-
sults, we have analyzed an in-line hologram of small
particles recorded in the laboratory. Specifically, we
have calculated the phase from the complex field ob-
tained through digital reconstruction from the re-
corded hologram. The experimental system consists
of a He—Ne laser, a spatial filter, a collimating lens
for illuminating the particles, and a CCD camera for
recording the hologram. The CCD contained 1024
X768, 4.65 um square pixels, with 10 bit output.
Glass spheres with a diameter of 40 um, with Na-
tional Institute of Standards and Technology trace-
able size calibration, were placed on a glass slide ap-
proximately 77 mm from the CCD.

Figure 2 shows the particle-phase signature recon-
structed from the experimental in-line holographic
data. It can be seen that the results match well with
those of the simulation shown in Fig. 1. The experi-
ment constitutes the proof of concept by demonstrat-
ing that the phase signature can be captured in prac-
tice and that the saturation value min{¢;,ps} is
consistent with the limitations imposed by finite size
effects as given in Eqgs. (3) and (4).

Of course, the phase signature can be used for par-
ticle detection only if it can be distinguished from the
background noise, such as in the case of our experi-
ment illustrated in Fig. 2. Can a much higher level of
noise be tolerated? To quantify the level of noise that
allows the particle-phase signature to be distin-
guished from the phase caused by noise, we consider
the following conservative scenario: a phase ¢ within
(=, ) reconstructed from a complex value (cos @
+n.) +i(sin 6+n;,), where 6 is the true phase value
on (-, ), and n,, and n;,, are the real and the imagi-
nary parts of noise (relative to unity), respectively.
Far from the particle, the reference light field is not
strongly perturbed so that the true phase angle @
~0. Thus the reconstructed phase angle can be ap-
proximated as ¢, ~tan"[n;,/(1+n,)]. Near the
particle, the reference light field can be strongly per-
turbed by the particle and the true phase angle 6
~ + 7. The reconstructed phase angle can then be
approximated as ¢, ~tan [(1+7n;,)/n..]. The noise
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level requirement 7 can be roughly estimated by con-
sidering the worst case in which the larger phase
value of ¢, ~tan"[n/(1-7)] will reach the lowered
phase value of ¢,,,~tan"![(1-7)/7]. A simple calcu-
lation provides the maximum tolerable noise level of
up to 7 ~50% if the maximum reconstructed phase in
the particle-phase signature is around or above .
Performing a simple Monte Carlo calculation shows
that if n,, and n;,, are independent and Gaussian dis-
tributed with zero means and sufficiently small vari-
ance; the reconstructed phase ¢ is similarly distrib-
uted except for a shifted mean of 4. This indicates
that a simple phase threshold of, say, Preshold
=+270,, where o, denotes the standard deviation of
the noise, may be used to distinguish the particle-
induced phase from that of the background noise.

In this Letter, through theoretical analysis, nu-
merical simulation, and experiment, we have demon-
strated the feasibility of using the phase signature of
particle fields reconstructed from digital in-line par-
ticle holograms for particle detection. This signature
appears robust because it readily distinguishes the
signal from the background noise. The approach pro-
vides an alternative to the widely used intensity
method for particle detection and may suggest other
possibilities for particle detection.
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