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SUMMARY

Droplet positions in atmospheric clouds are random but possibly correlated on some scales. This ‘clustering’
must be quanti� ed in order to account for it in theories of cloud evolution and radiative transfer. Tools as varied
as droplet concentratio n power spectrum, Fishing test, and fractal correlation analysis have been used to describe
the small-scale nature of clouds, and it has been dif� cult to compare conclusions systematicall y. Here we show,
by using the correlation- � uctuation theorem and the Wiener–Khinchin theorem, that all of these measures can
be related to the pair-correlatio n function. It is argued that the pair-correlatio n function is ideal for quantifying
droplet clustering because it contains no scale memory and because of its quantitative link to the Poisson process.
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1. INTRODUCTION AND BACKGROUND

Research activity devoted to the spatial distribution of cloud droplets at small (mm
to m) scales shows no signs of subsiding (for a review see Vaillancourt and Yau 2000).
Interest in this topic is driven by the importance of the droplet spatial distribution in
cloud processes such as droplet growth by condensation, collision–coalescence, and
radiative transfer. For example, the theory of droplet collision rates in clouds is based
on the assumption that droplets are distributed in space in a random and uncorrelated
fashion (e.g. Saffman and Turner 1956). Similarly the Beer–Lambert law, fundamental
to the theory of radiative transfer, is based on the same assumption (e.g. Kostinski 2001).

Recent progress in this � eld has been facilitated by at least two factors: the devel-
opment of new instruments capable of resolving small-scale features in clouds from
research aircraft (e.g. Chaumat and Brenguier 2001; Gerber et al. 2001), and the intro-
duction of theoretical tools suitable for describing or quantifying the spatial structure of
clouds (e.g. Baker 1992; Davis et al. 1999; Jaczewski and Malinowski 2000; Kostinski
and Jameson 2000; Pinsky and Khain 2001). It is on the second point that we wish
to focus in this paper. More speci� cally, our goal is to show that many of the tools
used for quantifying the spatial distribution of droplets are closely related, and can be
linked to fundamental probability theory through the pair-correlation function. To that
end, we restate the importance of examining the small-scale structure of clouds from
the perspective of random processes, attempt to clarify some of the essential notions
and tools used in the � eld, derive various relations between commonly used clustering
signatures and provide illustrations using both data and simulations .
¤ Corresponding author: Department of Physics, Michigan Technologica l University, 1400 Townsend Drive,
Houghton, MI 49931, USA. e-mail: rashaw@mtu.edu
c° Royal Meteorologica l Society, 2002.
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(a) Clustering described
Dif� culties sometimes arise over differences in terminology used when describing

the nature of the small-scale structure of clouds. Therefore we will attempt to clarify
the terminology of the theory of random processes used in this paper. To begin with,
we adopt the view that the position of a cloud droplet is a random variable. Given that
most clouds are turbulent, this follows the long-accepted tenet of turbulence studies that
turbulent systems should be viewed from a stochastic perspective. Part of the reasoning
for this is that it would be impossible to measure initial conditions with suf� cient
precision to predict the details of the evolution of a turbulent � ow or, for that matter,
the trajectories of individual cloud droplets—and even if it were possible , we would
have little reason to know such details.

While perhaps not as widely accepted in the cloud physics community, it seems
reasonable that the small-scale features of a cloud (e.g. metre-scales and below) must
be viewed in the same way, essentially as random processes governed by various
probability laws. A crucial aspect of this problem is that randomness of the variable
under consideration, whether it is the position of molecules in an ideal gas or velocity
in a turbulent � uid, does not preclude the existence of correlations; certainly, for
example, the existence of spatial and temporal correlations in the (random) velocity
� eld is a de� ning characteristic of turbulence. Any variable which cannot be predicted
is considered here to be a random variable.

In the light of these statements, we will use the following de� nitions (several of
these refer to the number of droplets in a volume, which is a countable random variable
not typically encountered in turbulence studies) .

1. Randomness is understood to mean, qualitatively, ‘unpredictable’ and does not
imply a lack of correlations or, in the case of numbers of cloud particles in volume bins,
randomness does not have to imply that the random variable is Poisson-distributed .

2. We will use the term ‘perfectly random’ for describing a random, countable
variable that is described by a Poisson probability density function (pdf) with no
correlations on any scale (the Poisson process is discussed below).

3. The word ‘homogeneous’ is taken to mean statistical homogeneity or, roughly,
that the statistica l properties of the data do not change with position (the temporal
analogue being statistical stationarity) . While it has been common to use the term
‘inhomogeneous’ when describing clouds containing ‘clustered’ (not perfectly random)
droplet distributions , we feel that this usage is best avoided for reasons detailed below.

(b) Clustering quanti� ed
Figure 1 is a schematic illustration of the three most important models of a counting

random process and of the notion of the pair-correlation function. Figure 1(a) provides
the standard of perfect randomness for dilute systems of particles. It is ‘perfect’ be-
cause the following conditions are ensured: (i) all particle positions are uniformly and
identically distributed random variables; (ii) the process is statistically homogeneous so
that statistical moments are independent of the choice of origin; (iii) particle positions
are statistically independent of each other. These conditions de� ne the Poisson process
whose statistics are characterized by the Poisson distribution on any scale. That is, the
(random) number of particles N D N.V /, in a test volume V , is distributed according
to:

p.N/ D
N

N
exp.¡N/

N !
; (1)
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Figure 1. (a) Statistically homogeneous Poisson process. Particle positions are uniformly, identically and
independentl y distributed random variables . This is the ‘perfect randomness ’ standard for dilute systems of
particles . (b) Statistically homogeneous but spatially correlated (not Poisson) random process. Particle positions
are uniformly distributed but not independen t random variables . Clumps exist but their ‘centres’ are uniformly
distributed random variables . (c) Statistically inhomogeneou s Poisson process. Our example is an ideal gas of
molecules in the gravitationa l � eld. Note that there are no clumps but the distribution parameter, number density
(N ), is a deterministic (exponentiall y decreasing ) function of height. (d) Pair-correlatio n function. Point A is
placed completely at random (uniformly distributed anywhere in the box). However, the conditional probability
for the position of point B is ‘biased’ by the (positive) pair-correlatio n with point A. This results in clumps as

in (b).

where N D N.V / is the mean number of particles in V . (Symbols are de� ned in the
appendix.) It is important to note that the validity of the Poisson distribution on some
spatial scale V does not imply the Poisson process. For example, positive and negative
deviations from the Poisson process on smaller spatial-scales can cancel each other and
result in Poisson statistics on longer scales as was shown by Kostinski and Shaw (2001).

In order to broaden our model we can either relax the statistica l independence or
the statistical stationarity assumptions. Let us discuss the resulting random processes, in
turn. The statistically homogeneous but spatially correlated random process is depicted
in Fig. 1(b). This is no longer a Poisson random-process, because lack of statistical
independence in particle positions allows the formation of clumps (or voids) which,
in turn, causes deviations from the Poisson distribution on spatial-scales comparable
with the clump size. Particle positions are not independent random variables. Note
that the positions of clump ‘centres’ are unpredictable—in fact, they are uniformly
distributed random variables. The ‘patchiness’ is quanti� ed by the pair-correlation
function ´, speci� cally de� ned as a deviation from perfect randomness (Poisson process;
see Eq. (3)).
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A statistically inhomogeneous Poisson process is illustrated in Fig. 1(c). For sim-
plicity we choose an ideal gas comprising molecules in a gravitationa l � eld. Note that
there are no clumps but, unlike the homogeneous process, the distribution parameter,
number density (N ), is a deterministic, hence predictable (exponentially decreasing)
function of height. Therefore, the particle count can still be given by the Poisson law but
with a variable process rate ¸:

p.N I L1; L2/ D
.
R L2

L1
¸.z/ dz/N

N !
exp

³
¡

Z L2

L1

¸.z/ dz

´
; (2)

where z is, for example, the height between L1 and L2, while N D
R L2

L1
¸.z/ dz. Note

that this distribution still has the Poissonian property that the mean N and variance
.±N/2 are equal.

In order to model cloud droplets via an inhomogeneous Poisson process, one has to
treat the local mean number density as a deterministic function. This requirement applies
even when attempting to model clouds as any statistically inhomogeneous random
process (not necessarily Poisson). Insofar as the mean number density of cloud particles
is not a predictable function, we choose the homogeneous correlated random-process
approach. This is similar to the introduction of the concept of homogeneous isotropic
turbulence where ‘structure’ functions are de� ned in terms of the turbulent velocity
correlations.

Figure 1(d) is our attempt to introduce the key notion of a pair-correlation idea
intuitively. The random process is statistically homogeneous (stationary) but correlated
(not Poisson). Point A is placed completely at random (uniformly distributed anywhere
in the box). However, the conditional probability for the position of point B is ‘biased’
by the pair-correlation with point A. If the bias (pair-correlation function) is positive,
particle clumps result as in Fig. 1(b). Physically, this could be due to the fact that both
points belong to the same vortex. If the bias is negative (‘repulsion’ or ‘dead space’
artifacts), the resulting particle distribution is more uniform than perfect randomness.

Based on the preceding discussion, we will assume that droplets are distributed in a
cloud in a random fashion—understanding , of course, that randomness does not neces-
sarily imply the absence of correlations. As mentioned before, ‘perfect randomness’ will
be de� ned as randomness without correlations at any scale. This lack of correlations can
be considered from at least three perspectives. First, for randomly spaced, uncorrelated
droplets, the probability of any given droplet being located at a particular position in the
cloud volume is constant throughout the volume (uniform pdf). Second, the probability
of � nding a given number of droplets in a volume element is given by the Poisson
distribution . Third, when projected into one dimension, the inter-droplet spacing is ex-
ponentially distributed. In principle, any of these three equivalent statements can be used
to ‘test’ the perfect randomness of a cloud. The difference is in the choice of the random
variable: particle position, number of droplets in a volume, or droplet spacing.

At this point, one can already see � aws in the assumption that droplets are distributed
in space in a perfectly random manner. For example, because of the � nite size of
droplets it is clear that the inter-drople t separation distance can never be less than
one droplet diameter, implying that, strictly speaking, projected separation distances
cannot be exponentially distributed (Kostinski and Shaw 2001). This observation serves
as motivation for quantifying the randomness of a cloud as a function of spatial-scale . In
other words we know, because of � nite size effects, that clouds are not perfectly random
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at spatial-scales less than one droplet diameter; but we would still like to know whether
they are perfectly random at mm or cm scales.

We consider a volume element dV suf� ciently small so that it can contain only one
droplet, and so that the probability of � nding a droplet in that volume is n dV , where n
is the mean droplet number density. If droplet positions are uncorrelated then we would
expect that the probability of � nding droplets in each of two volume elements dV 1 and
dV2 separated by distance r is Pr.1; 2/ D .n dV1/.n dV2/. If, however, the probabilities
are not independent we de� ne the pair-correlation function ´.r/ as (e.g. Green 1969,
chapter 2):

Pr .1; 2/ D .n dV1/.n dV2/f1 C ´.r/g: (3)

The pair-correlation function is zero for perfect randomness and has a lower limit of ¡1,
e.g. for scales less than the diameter of impenetrable particles. If the pair-correlation
function is greater than zero it implies that if a droplet is encountered at a given position
in a cloud, there is an enhanced probability of � nding another droplet distance r away.
It should also be mentioned that in the � uid mechanics literature, the pair-correlation
function often is referred to as the ‘radial distribution function’, g.r/. More precisely,
´.r/ D g.r/ ¡ 1, so that g.r/ D 1 when no correlations are present (Sundaram and
Collins 1997).

2. THE PAIR-CORRELATION FUNCTION AND OTHER MEASURES OF CLUSTERING

The commonly used tools for describing the small-scale structure of clouds are: the
Fishing test or clustering index (Baker 1992; Uhlig et al. 1998; Chaumat and Brenguier
2001; etc.); the correlation dimension fractal analysis (Grits et al. 2000; Jaczewski and
Malinowski 2000); and the power spectrum of droplet concentration or liquid water
content (Davis et al. 1999; Jeffery 2000; Gerber et al. 2001; Pinsky and Khain 2001).
Two fundamental theorems of mathematical physics allow us to link quantitatively each
of these measures to the pair-correlation function. These quantities are related as in the
following schematic:

CI

´

¼
( ´ () ½ )

» S

P
; (4)

where CI is the clustering index, ´ is the volume-averaged pair-correlation function, ½
is the autocorrelation function, S is the structure function, and P is the power spectrum
of droplet concentration. As will be discussed, the clustering index is calculated from
´ using the Ornstein–Zernike equation, also referred to as the correlation-� uctuation
theorem (Kostinski and Jameson 2000; Kostinski and Shaw 2001). Also, ´ is directly
linked to the power spectrum of droplet concentration via the Wiener–Khinchin theorem
as we show below.

(a) Clustering index
It is a property of the Poisson distribution that the variance is equal to the mean.

Therefore it is natural to de� ne CI as the variance-to-mean ratio as has been done in
several � elds of science and was introduced to cloud physics by Baker (1992). Hence,

CI.V / D
.±N/2

N
¡ 1; (5)

where N is the random number of droplets in a volume, N is the mean number of

droplets, and .±N/2 ´ .N ¡ N/2 is the variance. CI is zero for the Poisson distribution
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(for any given test volume V ) and becomes positive when positive spatial correlations
are dominant in V . It has been used by several groups to quantify the degree of droplet
clustering in clouds (Baker 1992; Borrmann et al. 1993; Uhlig et al. 1998; Vaillancourt
et al. 2000; Chaumat and Brenguier 2001). For completeness we note that the Fishing
test, F , is a scaled estimator of CI (see Baker 1992 for details); only CI will be
considered in this paper because the two are closely related.

An important point to be made here is that one must interpret the clustering index
with caution, because of its inherent volume dependence it is not uniquely related to a
single spatial-scale, but instead represents contributions from a range of scales. Indeed,
the explicit link between CI and the scale-localized pair-correlation function is given by
the correlation-� uctuation theorem (Landau and Lifshitz 1980, section 116)

.±N/2

N
¡ 1 D n

Z V

0
´.V 0/ dV 0: (6)

Hence, the clustering index is said to contain ‘memory’ of all scales within volume V
(Kostinski and Shaw 2001). However, Eq. (6) gives a clear approach for obtaining a
scale-localizable measure of droplet clustering from CI.

(b) Volume-averaged pair-correlation function
The volume-averaged pair-correlation function is de� ned as

´ D
1
V

Z V

0
´.V 0/ dV 0 D

.±N/2

N
2

¡
1

N
D

CI

N
; (7)

where N , .±N/2, CI, and ´ are all volume dependent. As with CI, ´ is straightforward
to calculate, for example, simply by calculating N and .±N/2. However, it has the added
advantage of possessing greatly reduced scale memory (or greater localization) relative
to CI, due to the weighting of CI by N.V / in Eq. (7).

An example relevant to cloud physics illustrates the difference in scale memory
between CI and ´ (see Kostinski and Shaw 2001 for additional details). We consider a
perfectly random distribution of cloud droplets, except that the droplets possess some
� nite size, say diameter D. For this scenario the pair-correlation function is ´.r/ D ¡1
for r · r± and ´.r/ D 0 for r > r± (assuming the system is dilute). Using Eq. (7) we
see that for r > r±, ´.r/ D ¡.r±=r/3 and CI.r/ D ¡n.4=3/¼r3

± . Clearly, the memory of
droplet � nite size in CI.r/ persists for all scales, whereas this memory dies out as r ¡3

for ´.r/.
Another important consideration is that ´ can be related to other approaches for

quantifying droplet clustering in clouds, as will be explained in the following section.

(c) Correlation dimension and fractal analysis
Jaczewski and Malinowski (2000) have analysed two-dimensiona l (2-D) droplet

spacing data by calculating an average concentration, de� ned as the average number of
droplets in a circle of radius r , with the condition that the circle is centred on a droplet:
C.r/ D N.r/=¼r2. The data are assumed to scale as C.r/ » r D¡2, where D is called
the ‘correlation dimension’ and is used to quantify the degree of droplet clustering. Grits
et al. (2000) have used a similar approach, centring circles on a particle, counting the
number of neighbouring droplets falling in the circle, etc. These measures of droplet
clustering have a clear physical interpretation in the context of the pair-correlation
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function and its fundamental de� nition. For example, if a volume V is chosen at random
we would expect to � nd N D nV particles in the volume. If, however, the volume is
conditioned to be centred on a particle we would expect the number of other particles in
the volume to be:

N p D nV C n

Z V

0
´.V 0/ dV 0; (8)

where the additional term on the right side of Eq. (8) is a result of correlations in droplet
positions. We note that the correlation term can be positive or negative, so that N p can
be greater or less than N .

Adopting the 2-D geometry of Jaczewski and Malinowski (2000) and Grits et al.
(2000) and assuming the collection of droplets is distributed in a random and uncor-
related fashion, we would expect that N.r/ D n¼r 2, where n is the 2-D mean number
density of droplets. If, however, correlations exist at scales less than or equal to r , then
N.r/ will be enhanced. This enhancement can be quanti� ed since C.r/ is related to the
conditional probability of � nding a droplet at distance r from an existing droplet, which,
from Eq. (3) is Pr .1j2/ D n dV f1 C ´.r/g. This must be integrated because all droplets
between 0 and r are counted, so it follows that C.r/ can be written as:

C.r/ D n

³
1 C

1
¼r2

Z r

0
´.r 0/2¼r 0 dr 0

´
D n.1 C ´.r//: (9)

Clearly, the conditional concentration C.r/ is closely related to the volume-averaged
pair-correlation function, which has been shown to be a useful approximation to ´,
in the sense that it is has less scale memory than the clustering index or Fishing test
(Kostinski and Shaw 2001). In fact, it is possible to generalize this statement based
on the power law assumption of Jaczewski and Malinowski (2000). To do this, let us
consider a population of droplets that obeys the power law ´.r/ D cr ¡® at scales from
r down to the � nite size of the droplets, which will be taken as r± (this scale being equal
to the diameter of the droplets). For r < r± we know that ´.r/ D ¡1. Let us also take the
1-D case for simplicity and calculate ´.r/, which will allow us to calculate C.r/ using
Eq. (9). The integration yields:

´.r/ D ¡
c

® ¡ 1
r¡® ¡

r±
r

³
1 ¡

c

® ¡ 1
r¡®
±

´
: (10)

Using Eq. (10) it can be shown that ´.r/ has the same slope (in log–log space) as
´.r/ only for ® < 1. For ® > 1 the memory of droplet � nite size (r±) dominates the
power law exponent of ´.r/ at all scales. The implication, therefore, is that the power
law exponent of ´.r/, and therefore C.r/, must be interpreted carefully because it can
have completely different physical causes. In one regime it closely resembles the actual
slope of ´.r/ and in another regime it is dominated at all scales by the � nite size of the
droplets.

(d ) Autocorrelation function
From the fundamental de� nition of ´.r/ given in Eq. (3) it is possible to write:

´.r/ D
Pr.1; 2/

.n dV /2
¡ 1: (11)

The joint probability Pr.1; 2/ can be calculated in practice by dividing a data series into
volumes suf� ciently small so as to contain only 1 or 0 droplets, the volumes being
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separated by a length r . For a 1-D data series the joint probability is calculated as

fn.r±/ dV gfn.r± C r/ dV g. Because .n dV /2 D N
2

we can write:

´.r/ D .1=N
2
/N.r±/N.r± C r/ ¡ 1; (12)

which we may consider to be an ‘operational de� nition’. This is a powerful result
because it provides a direct link to the traditional autocorrelation function, de� ned as
(e.g. Frisch 1995, chapter 4):

½.r/ D n0.r±/n0.r± C r/=n02; (13)

where n0 ´ n ¡ n is the ‘� uctuating’ component. We note that, strictly speaking, ½.r/
is de� ned for continuous variables. It is, therefore, quite a subtle step to translate the
continuous language of ½.r/ to the ‘counting’ language of ´.r/. If lag r D 0 is ignored,
however, this translation can be made via:

´.r/ D ½.r/n02=n2; (14)

keeping in mind that N in Eq. (12) is not the � uctuating component N 0 but, rather, is
the full variable. Indeed, the ¡1 in Eq. (12) serves to remove the mean so that Eq. (14)
holds.

(e) Structure function
Although to our knowledge it has not often been used in cloud physics, in Eq. (4) we

included the structure function, S, because of its prominence in the � eld of turbulence
and its connections to the power spectrum. Qualitatively, S characterizes self-coherence
as a function of spatial-scale r . For example, S is used as a measure of the correlation
in velocity or passive scalar � elds in turbulent � ows (e.g. Frisch 1995, chapter 5).
The second-order structure function is de� ned as:

S.r/ D fn0.r±/ ¡ n0.r± C r/g2; (15)

and is directly related to the autocorrelation and pair-correlation functions via:

S.r/ D 2n02.1 ¡ ½.r// D 2.n02 ¡ n2´.r//: (16)

Both ½.r/ and S.r/ are related to the power spectrum, as discussed in the next section.

( f ) Power spectrum
The Wiener–Khinchin theorem provides a quantitative link between the autocorre-

lation function of a data series and the power spectral density of the data series (Reif
1965, section 15.15):

P .k/ D
1

2¼

Z 1

¡1
½.r/ e¡ikr dr: (17)

It is possible , therefore, to relate the well-developed concepts of Fourier analysis to the
pair-correlation function, via its links to the autocorrelation function and the structure
function. For example, the ‘enhanced variance’ at small scales observed by Davis et al.
(1999) and Gerber et al. (2001) may be related to the peak in the pair-correlation
function observed at similar scales by Kostinski and Shaw (2001). A direct quantitative
comparison of the data is not possible because Davis et al. (1999) and Gerber et al.
(2001) used continuous liquid water content data while Kostinski and Shaw (2001)
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used discrete droplet counts. Another approach that can be interpreted in the context
of Eq. (17) is the Fourier decomposition work of Pinsky and Khain (2001) using droplet
concentration data. The authors break their time series into two regimes, separated
by an arbitrary scale, with the large scales being removed by � tting and subtracting
Fourier components. The remaining small-scale concentration � uctuations are analysed
by calculating a power spectrum and then taking an inverse Fourier transform of this
spectrum. Considering Eq. (17), it would appear that the end result is a calculation of
the autocorrelation function of high-pass-� ltered droplet concentration. Hence, the work
of Pinsky and Khain (2001) is based on a fundamentally different point of view, that of
an inhomogeneous Poisson process (Fig. 1(c)). On the other hand, our point of view is
that of a homogeneous non-Poisson (correlated) process (Fig. 1(b)).

A speci� c example will serve to make the link between ½.r/ and P .k/ explicit.
Under certain conditions (e.g. Frisch 1995) it is possible to relate the functional form
of the power spectrum for a certain range of wave numbers to the functional form of
the autocorrelation function over a similar range of lags. If the power spectrum has
the form k¡n, and 1 < n < 3, then the autocorrelation function will scale as 1 ¡ r n¡1.
For example, the autocorrelation function:

½.r/ D c e¡®jr j; (18)

(e.g. this kind of model might be justi� ed in the context of correlating droplet velocity
to local � uid velocity) has the Fourier transform pair:

P .k/ D
c

¼®

³
1

1 C .k=®/2

´
: (19)

In the limit .k=®/2 À 1, Eq. (19) has a power law form, P .k/ » k¡2 D k¡6=3. In this
limit it follows that ®jr j ¿ 1 so that Eq. (18) has the form ½.r/ » 1 ¡ ®jr j, as expected.
It is possible , therefore, to extend the various power law exponents encountered in
the study of scalars in turbulent � ows, for example ¡5=3 for the inertial subrange,
to the shape of the pair-correlation function (via the operational de� nition of ´).
Furthermore, we may speculate that an exponent of ¡1 for the power spectrum of
droplet concentration, which might be expected for the viscous convective subrange due
to the relatively small diffusivity of cloud droplets (e.g. Batchelor 1959; Jeffery 2000),
will result in a � at ´.r/ at that range of scales. (Note that one must consider an exponent
that approaches ¡1, since ¡1 is outside the range of the approximation being used.)
Indeed, data from a statistically homogeneous region in a cumulus cloud show that ´.r/

is nearly � at at scales between 10¡1 and 1 m. (See Figs. 3 and 4, described in section 3.)
Below 10¡1 m, however, there is signi� cantly more clustering than would be expected;
possible causes of this have been discussed elsewhere (Kostinski and Shaw 2001).

3. ILLUSTRATION

To illustrate the relationships described in the last section, we will examine simu-
lated time series as well as actual cloud probe data. We begin with the notion of the pair-
correlation function and then proceed to discuss other clustering signatures. In Fig. 2 we
show an example of binned arrival positions of droplets detected by the Météo-France
Fast Forward Scattering Spectrometer Probe (Fast FSSP) during the Small Cumulus
Microphysics Study (SCMS). This probe records the arrival time of each cloud droplet
that enters the detection region of the probe. This is converted to a spatial position by
multiplying the elapsed time by the aircraft velocity to obtain a distance from the � rst
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Figure 2. Droplet counts for a traverse of a cumulus cloud. These measurements were taken by the Météo-France
Fast Forward Scattering Spectrometer Probe during the Small Cumulus Microphysics Study.

droplet (with the relative separation known to within approximately 10 ¹m, based on
the instrument clock speed).

The two curves in Fig. 3 correspond to the pair-correlation function computed for
the ‘cloud core’ (lower curve) and for the entire traverse (upper curve). The former
is the region between 500 and 700 m in Fig. 2 which is characterized by statistically
homogeneous conditions (for details see Kostinski and Shaw (2001), and appendix A of
Kostinski and Jameson (2000)).

The most notable feature of Fig. 3 is the insensitivit y of the entire shape of the
pair-correlation function to whether the cloud core or the entire traverse is used.
The two curves are separated by a vertical shift but look similar otherwise, at least
qualitatively (e.g. both curves display a sharp rise at small scales, a peak near 500 ¹m,
and a gentle decay with increasing scale). The fact that small-scale clustering is not
obscured by large-scale � uctuations (sometimes described as ‘inhomogeneities ’ in the
literature) is quite encouraging, and demonstrates robustness of the pair-correlation-
function approach. We also note that eventually the pair-correlation function must
approach zero for both curves.

Perhaps the vertical shift can be understood as follows. The pair-correlation function
is a measure of departure from the Poisson process. Consequently, the clustering at � ne
scales is an enhancement in the fraction of particle pairs separated, say, by 300 ¹m,
relative to the fraction expected for the Poisson process. For the homogeneous core
data, the enhancement is negative (hardly any pairs are separated by 300 ¹m because
of probe � ltering—Kostinski and Shaw (2001)), hence the pair-correlation function
is negative. However, placing this fact in the context of the entire traverse causes the
positive shift because cloud ‘holes’ such as between 175 and 225 m are included, which
greatly lowers the Poissonian expectation against which the pair-correlation function
is measured. Thus, the notion is ensemble-dependent , and renders subtle the physical
interpretation of actual numerical values. This reasoning holds for any scale in the � gure
and, therefore, accounts for the upward shift illustrated in Fig. 3.
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Figure 3. The pair-correlatio n function ´.r/, calculated using the operational de� nition (see Eq. (12)). The top
curve correspond s to all of the data shown in Fig. 2 and the bottom curve to data between approximately 500 and
700 m. The general shape of ´.r/ is largely the same for the cloud core and for the entire traverse. The curve
correspondin g to all of the data is shifted up because the Poissonian expectation is lower when ‘holes’ such as

that between 175 and 225 m in Fig. 2 are included in the series.

To illustrate ´ and its relationship to other measures of droplet clustering we have
calculated several of the signatures discussed in section 2. In Fig. 4 we show plots of
´, ´, CI, and P calculated for the entire cloud traverse shown in Fig. 2, and also for an
‘equivalent Poisson’ simulation having the same mean and number of droplets as the
data. The variable ½ is not shown because it has the same shape as ´, simply scaled
by a constant (see Eq. (14)). The top graph in each of the four panels in Fig. 4 shows
the results for the Fast FSSP data, while the bottom graph displays the same quantity
calculated for a simulated Poisson process.

In Fig. 4(a), ´.r/ corresponding to the Poisson process is zero at all scales, as
expected. For the cloud traverse ´.r/ displays a clear enhancement of droplet clustering
at scales below several cm. The enhancement becomes stronger with decreasing scale
until it is cut off due to the � nite instrument resolution resulting from the FSSP optical
design. Note also that at lags greater than 1 m, a slow linear decay is observed which,
although not shown, eventually reaches zero at about 60 metres.

The volume-averaged pair-correlation function ´.r/ is shown in Fig. 4(b). The
clustering can no longer be completely ‘localized’ or attributed to a given scale. Indeed,
because of the volume averaging, it has memory of sub-scales including those affected
by the probe � ltering. This is re� ected in the peak delay and slower (than ´) descent.
Note also that the negative tail can be � tted approximately with the simple model
described in section 2.

In Fig. 4(c) the cumulative nature of CI is clearly seen. For example, it increases
monotonically in the region where ´ is a positive but constant value. Comparison with
Fig. 4(a) con� rms that the relatively small magnitude of CI at small scales does not
necessarily imply a lack of clustering at those scales. Similarly, the relatively large
magnitude of CI at larger scales is a manifestation of clustering at smaller scales
‘adding up’. As suggested earlier, ´ gives a much more accurate view of scale-dependent
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Figure 4. Illustration of the clustering signature calculations : pair-correlatio n function, ´; its average, ´; the
clustering index, CI; and power spectral density, P . Horizontal scales are given as distances (m). In the vertical
scale of sub-plot (d) ¡4, ¡2, and 0 correspond to 10¡4 , 10¡2 and 1, respectivel y. In each of the four panels,
the upper graph displays actual data while the lower graph displays the equivalen t Poisson process (with the
same mean and number of points as those of data): (a) shows the pair correlation function ´ calculated via the

operational de� nition (Eq. (12)); (b) is ´; (c) is the clustering index; and (d) shows the power spectral density.

clustering than does CI. Fortunately, ´ can be obtained from CI simply by weighting it
by N.V /, leading to the greatly reduced scale memory (or greater localization) of ´.

In Fig. 4(d) it is clear that, as expected, the uncorrelated series have a ‘white
noise’ (� at) spectrum. The cloud data are ‘red’, but there is no clear ¡5=3 slope.
Spectral slopes, however, are quite sensitive to details of the data series, in particular the
statistical homogeneity, so it is dif� cult to make solid conclusions based on limited data.

The plots in Fig. 4 illustrate the relative merits of various signatures of droplet
clustering. Each variable, ´, ´, CI, and P , contains scale-dependent information and its
interpretation must be based on the theory underlying its de� nition. We would argue that
for a countable variable such as droplets in clouds, the pair-correlation function provides
the most natural, scale-localized, and physically meaningful measure of correlations.
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4. CONCLUDING REMARKS

We have attempted to show that seemingly independent tools used by various groups
to study droplet clustering in clouds are related. The links between these tools are based
on the correlation-� uctuation theorem and the Wiener–Khinchin theorem. In the context
of these theorems we argue that the pair-correlation function has a particularly clear
physical interpretation for a discrete system such as a cloud. This interpretation is based
on the theory of counting random processes, and makes no ad hoc assumptions about
the physical mechanisms possibly responsible for droplet clustering.

In one of the early papers which sparked an interest in this topic in the � eld
of cloud physics, Baker (1992) wrote: “A useful method of analysis is one that can
detect and characterize inhomogeneity of the droplet concentration by comparing the
measured distribution s with expected distributions ”. The ‘inhomogeneity ’ referred to is
presumably not statistical inhomogeneity but rather the existence of correlations—the
‘clumpiness’ of the cloud. In fact, statistical homogeneity is required if the powerful
mathematical tools discussed here are to be used in a meaningful way. Baker went on to
introduce the clustering index to cloud physics, and quanti� ed its statistical signi� cance
with the Fishing test.

As we have shown, the clustering index is actually a concentration-weighted integral
of the pair-correlation function ´. This is a two-point notion rather than an integrated
quantity, so that dif� culties related to scale memory are avoided and scale-dependent
correlations can be localized. The pair-correlation function provides exactly what Baker
alluded to: it quanti� es clustering by comparing measured spatial distribution s with
a standard of perfect randomness and it does so in a scale-localizable manner. The
conditional-probabilit y approaches used by several groups can also be understood in
terms of the volume-averaged pair-correlation function, and their scale memory can be
evaluated thereby. Finally, the pair-correlation function is shown to have a fundamental
link to the power spectrum of droplet concentration, allowing connections to be made to
previous work in this area.

We have argued that the pair-correlation function ´ has certain properties that make
it ideal for quantifying droplet clustering. These can be summarized as: (i) ´ satis� es
the correlation-� uctuation theorem; (ii) ´ can be used to derive other commonly used
measures of droplet clustering; (iii) ´ is scale localized; (iv) ´ can be easily interpreted
based on the theory of random processes; and (v) ´ can be extended to the theory of
radiative transfer, collision–coalescence, and rain characterization (e.g. Jameson and
Kostinski 2000; Kostinski 2001; Shaw et al. 2002; Sundaram and Collins 1997).
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APPENDIX

Key variables used

C conditional concentration
CI clustering index
F Fishing test
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g radial distribution function
k wave number
n instantaneous droplet number density (random variable)
n mean droplet number density
n0 � uctuating component of n
N number of droplets in volume V (random variable)
N mean number of droplets in V

.±N/2 variance in number of droplets in V
p.N/ probability density of droplet counts in V
P power spectrum
Pr .1; 2/ joint probability of droplet separation by r
r independent variable (length-scale) for all measures of clustering (´, ½, etc.)
S structure function
V averaging volume associated with scale r
´ pair-correlation function
´ volume-averaged pair-correlation function
½ autocorrelation function

Occasionally, measures of clustering (´, ½, etc.) are written so as to make the functional
dependence on length-scale, r , explicit (e.g. ´.r/).
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