Electric Charges and Forces

$F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{K\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}$
$q=\left(N_{\mathrm{p}}-N_{\mathrm{e}}\right) e$
$\vec{E}=\vec{F}_{\text {onq }} / q$
$\vec{F}_{\text {on }}=q_{B} \vec{E}$
$\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{r} \quad$ point charge

The Electric Field

$\vec{E}_{\text {net }}=\sum_{i} \vec{E}_{i}$
Electric dipole:

$\vec{p}=(q s$, from negative to positive)
Field on axis $\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \vec{p}}{r^{3}}$
Field in bisecting plane $\vec{E}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p}}{r^{3}}$ linear charge density : $\lambda=\frac{Q}{L}$
surface charge density: $\eta=\frac{Q}{A}$
volume charge density : $\rho=\frac{Q}{V}$
Uniform infinite line of charge:
$\vec{E}=\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \lambda}{r}\right.$, perpendicular to line $)$
Uniform infinite plane of charge:
$\vec{E}=\left(\frac{\eta}{2 \varepsilon_{0}}\right.$, perpendicular to plane $)$
Uniformly charged sphere:

$$
\vec{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \quad \text { for } r \geq R
$$

Parallel-plate capacitor:

$$
\vec{E}=\left(\frac{\eta}{\varepsilon_{0}}, \text { from positive to negative }\right)
$$

$\left(E_{\text {ring }}\right)_{z}=\frac{1}{4 \pi \varepsilon_{0}} \frac{z Q}{\left(z^{2}+R^{2}\right)^{3 / 2}}$
$\left(E_{\text {disk }}\right)_{z}=\frac{\eta}{2 \varepsilon_{0}}\left[1-\frac{z}{\sqrt{\mathrm{z}^{2}+R^{2}}}\right]$
$\vec{a}=(q / m) \vec{E}$
$\tau=p E \sin \theta$

Gauss's Law

$\Phi_{\mathrm{e}}=\vec{E} \cdot \vec{A}=E A \cos \theta$ constant field
$\Phi_{\mathrm{e}}=\int_{\text {sufface }} \vec{E} \cdot d \vec{A}$
$\Phi_{\mathrm{e}}=\oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {in }}}{\varepsilon_{0}}$
\vec{E} at surface of a charged conductor:

$$
E_{\text {surface }}=\left\{\begin{array}{l}
\frac{\eta}{\varepsilon_{0}} \\
\text { perpendicular to surface }
\end{array}\right.
$$

The Electric Potential

$U_{\text {elect }}=U_{0}+q E s \quad$ (parallel-plate capacitor)
$U_{q_{1}+q_{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} \quad U_{\text {elect }}=\sum_{i<j} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{i} q_{j}}{r_{i j}}$
$U_{\text {dipole }}=-\vec{p} \cdot \vec{E}=-p E \cos \theta$
$U_{q+\text { sources }}=q V \quad V=\frac{U_{q+\text { sourres }}}{q}$
$V=E s \quad$ (inside a parallel-plate capacitor)
$E=\frac{\Delta V_{\mathrm{C}}}{d}$ (parallel plate capacitor)
$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r} \quad$ point charge
$V=\sum_{i} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{i}}{r_{i}}$

Potential and Field

$\Delta V=V\left(s_{\mathrm{f}}\right)-V\left(s_{\mathrm{i}}\right)=-\int_{s_{\mathrm{i}}}^{s_{\mathrm{f}}} E_{s} d s$
= the negative of the "area"
$E_{s}=-\frac{d V}{d s}$
$\Delta V_{\text {loop }}=\sum_{i}(\Delta V)_{i}=0$
$\Delta V_{\text {bat }}=\frac{W_{\text {chem }}}{q}=\mathcal{E}$ (ideal battery)
$C=\frac{Q}{\Delta V_{\mathrm{C}}} \quad C=\kappa C_{0}$
$C=\frac{\varepsilon_{0} A}{d} \quad$ (parallel-plate capacitor)
$C_{\text {eq }}=C_{1}+C_{2}+C_{3}+\ldots$ (parallel)
$C_{\mathrm{eq}}=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots\right)^{-1}$ (series)
$U_{\mathrm{C}}=\frac{Q^{2}}{2 C}=\frac{1}{2} C\left(\Delta V_{\mathrm{C}}\right)^{2} \quad u_{\mathrm{E}}=\frac{\varepsilon_{0}}{2} E^{2}$

Current and Conductivity

Electron current:
$i=$ rate of electron flow
$N_{\mathrm{e}}=i \Delta t$
$i=n A v_{\mathrm{d}}$
$v_{\mathrm{d}}=\frac{e \tau}{m} E$
Conventional current:

$$
\begin{aligned}
& I=\text { rate of charge flow }=e i \\
& Q=I \Delta t
\end{aligned}
$$

Current density:

$$
\begin{aligned}
& J=I / A \\
& J=n e v_{\mathrm{d}}=\sigma E \\
& \sigma=\frac{n e^{2} \tau}{m}=\frac{1}{\rho} \\
& \sum I_{\text {in }}=\sum I_{\text {out }} \\
& E_{\text {wire }}=\frac{\Delta V_{\text {wire }}}{L} \\
& I=\frac{\Delta V_{\text {wire }}}{R} \text { where } R=\frac{\rho L}{A}
\end{aligned}
$$

Fundamentals of Circuits

$I=\frac{\Delta V}{R}$
junction law: $\quad \sum I_{\text {in }}=\sum I_{\text {out }}$
loop law : $\quad \Delta V_{\text {loop }}=\sum_{i}(\Delta V)_{i}=0$
$P_{\text {bat }}=I \mathcal{E}$
$P_{\mathrm{R}}=I \Delta V_{\mathrm{R}}=I^{2} R=\frac{\left(\Delta V_{\mathrm{R}}\right)^{2}}{R}$
$R_{\text {eq }}=R_{1}+R_{2}+R_{3}+\ldots+R_{\mathrm{N}}$ (series)
$R_{\text {eq }}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots+\frac{1}{R_{\mathrm{N}}}\right)^{-1} \quad$ (parallel)
$Q=Q_{0} e^{-t / \tau} \quad I=I_{0} e^{-t / \tau} \quad \tau=R C$

The Magnetic Field

$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}}=\left(\frac{\mu_{0}|q| v \sin \theta}{4 \pi r^{2}}\right.$, RHR $)$
$\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I \Delta \vec{s} \times \hat{r}}{r^{2}}=\left(\frac{\mu_{0} I(\Delta s) \sin \theta}{4 \pi r^{2}}\right.$, RHR $)$
$B_{\text {long straight wire }}=\frac{\mu_{0}}{2 \pi} \frac{I}{d} \quad B_{\text {coil center }}=\frac{\mu_{0}}{2} \frac{N I}{R}$
$\vec{\mu}=(A I$, from south pole to north pole $)$
$\vec{B}_{\text {dipole }}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{\mu}}{z^{3}}$ (on axis of dipole)
$\oint \vec{B} \cdot d \vec{s}=\mu_{o} I_{\text {through }}$
$B_{\text {solenoid }}=\frac{\mu_{0} N I}{L}$
$\vec{F}_{\text {on } q}=q \vec{v} \times \vec{B}=(|q| v B \sin \theta$, RHR $)$
$f_{\text {cyc }}=\frac{q B}{2 \pi m} \quad r_{\text {cyc }}=\frac{m v}{q B}$
$\vec{F}_{\text {wire }}=I \vec{L} \times \vec{B}=(I L B \sin \theta, R H R)$
$F_{\text {parallel wires }}=\frac{\mu_{0} L I_{1} I_{2}}{2 \pi d}$
$\vec{\tau}=\vec{\mu} \times \vec{B}=(\mu \mathrm{B} \sin \theta, \mathrm{RHR})$

Electromagnetic Induction

$\mathcal{E}=v l B$
$\Phi_{\mathrm{m}}=\vec{A} \cdot \vec{B}=A B \cos \theta \quad$ (uniform \vec{B}-field)
$\Phi_{\mathrm{m}}=\int_{\text {area of loop }} \vec{B} \cdot d \vec{A}$
$\mathcal{E}=N\left|\frac{d \Phi_{\text {per turn }}}{d t}\right|$
$\mathcal{E}_{\text {coil }}=\omega A B N \sin \omega t$
$V_{2}=\frac{N_{2}}{N_{1}} V_{1}$

Electromagnetic Fields and Waves

$\oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {in }}}{\varepsilon_{0}}$
$\oint \vec{B} \cdot d \vec{A}=0$
$\oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{\mathrm{m}}}{d t}$
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {through }}+\varepsilon_{0} \mu_{0} \frac{d \Phi_{\mathrm{e}}}{d t}$
$\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$
$I_{\text {disp }}=\varepsilon_{0} \frac{d \Phi_{\mathrm{e}}}{d t}$
$v_{\mathrm{em}}=c=1 / \sqrt{\varepsilon_{0} \mu_{0}}$
$c=\lambda f$
$E=c B$
$\vec{S}=\frac{1}{\mu_{0}}(\vec{E} \times \vec{B})$
$I=\frac{P}{A}=S_{\text {avg }}=\frac{1}{2 c \mu_{0}} E_{0}^{2}=\frac{c \varepsilon_{0}}{2} E_{0}^{2}$
$p_{\text {rad }}=\frac{F}{A}=\frac{I}{c} \quad$ (perfect absorber)
$I=I_{0} \cos ^{2} \theta$
$I_{\text {transmited }}=\frac{1}{2} I_{0}$ (incident light unpolarized)

Physical Constants

$$
\begin{aligned}
& K=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& \mu_{0}=1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
& c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Useful Geometry

Circle
Area $=\pi r^{2}$
Circumference $=2 \pi r$

Sphere

Surface area $=4 \pi r^{2}$
Volume $=\frac{4}{3} \pi r^{3}$
Cylinder
Lateral surface area $=2 \pi r L$
Volume $=\pi r^{2} L$

PH2100 in Brief

$\vec{F}_{\text {net }}=\sum_{i} \vec{F}_{i}=m \vec{a}$
$\vec{F}_{\text {Aon } B}=-\vec{F}_{\text {Bon A }}$
$F_{\text {spring }}=-k \Delta s$

Constant Acceleration :

$$
\begin{aligned}
& x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{ix}} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} \\
& y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{iy}} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
& v_{\mathrm{fx}}=v_{\mathrm{ix}}+a_{x} \Delta t \\
& v_{\mathrm{fy}}=v_{\mathrm{iy}}+a_{y} \Delta t \\
& v_{\mathrm{fx}}^{2}=v_{\mathrm{ix}}^{2}+2 a_{x}\left(x_{\mathrm{f}}-x_{\mathrm{i}}\right) \\
& v_{\mathrm{fy}}^{2}=v_{\mathrm{iy}}^{2}+2 a_{y}\left(y_{\mathrm{f}}-y_{\mathrm{i}}\right)
\end{aligned}
$$

Uniform Circular Motion :

$$
\begin{aligned}
& v=\frac{2 \pi r}{T} \quad \omega=\frac{2 \pi \mathrm{rad}}{T} \\
& \theta_{\mathrm{f}}=\theta_{\mathrm{i}}+\omega \Delta t \\
& a_{\mathrm{r}}=\frac{v^{2}}{r}=\omega^{2} r
\end{aligned}
$$

Energy Conservation

$$
\begin{aligned}
& K=\frac{1}{2} m v^{2} \\
& E_{\mathrm{mech}}=K+U \\
& K_{\mathrm{f}}+U_{\mathrm{f}}=K_{\mathrm{i}}+U_{\mathrm{i}} \\
& P=\vec{F} \cdot \vec{v}=F v \cos \theta
\end{aligned}
$$

